Lösung 1.3:5a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The number
+
The number 4 can be written as <math>4=2\centerdot 2=2^{2}</math> and then, using the power rules, we obtain
-
<math>4</math>
+
-
can be written as
+
-
<math>4=2\centerdot 2=2^{2}</math>
+
-
and then, using the power rules, we obtain
+
 +
{{Displayed math||<math>4^{\frac{1}{2}} = \bigl(2^{2}\bigr)^{\frac{1}{2}} = 2^{2\cdot \frac{1}{2}} = 2^{1} =2\,</math>.}}
-
<math>4^{\frac{1}{2}}=\left( 2^{2} \right)^{\frac{1}{2}}=2^{2\centerdot \frac{1}{2}}=2^{1}=2</math>
+
Note: Another way to denote <math>4^{\frac{1}{2}}</math> is <math>\sqrt{4}</math> (the square root of 4); more on this in the section on roots later in the course.
-
 
+
-
NOTE: another way to denote
+
-
<math>4^{\frac{1}{2}}</math>
+
-
is
+
-
<math>\sqrt{4}</math>
+
-
(the root of
+
-
<math>4</math>
+
-
); more on this in the section on roots later in the course.
+

Version vom 14:22, 22. Sep. 2008

The number 4 can be written as \displaystyle 4=2\centerdot 2=2^{2} and then, using the power rules, we obtain

Vorlage:Displayed math

Note: Another way to denote \displaystyle 4^{\frac{1}{2}} is \displaystyle \sqrt{4} (the square root of 4); more on this in the section on roots later in the course.