Lösung 1.3:4b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | The numbers | + | The numbers 9 and 27 can both be written as powers of 3, |
- | + | ||
- | and | + | |
- | + | ||
- | can both be written as powers of | + | |
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | 9 &= 3\cdot 3 = 3^{2}\,,\\[5pt] | ||
+ | 27 &= 3\cdot 9 = 3\cdot 3\cdot 3 = 3^{3}\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | Thus, all factors in the expression can be written using a common base and the whole product can be simplified using the power rules | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | + | 3^{13}\cdot 9^{-3}\cdot 27^{-2} &= 3^{13}\cdot (3^{2})^{-3}\cdot (3^{3})^{-2}\\[3pt] | |
- | + | &= 3^{13}\cdot 3^{2\cdot (-3)}\cdot 3^{3\cdot (-2)}\\[3pt] | |
- | + | &= 3^{13}\cdot 3^{-6}\cdot 3^{-6}\\[3pt] | |
- | + | &= 3^{13-6-6}\\[3pt] | |
- | + | &= 3^{1}\\[3pt] | |
- | <math>\begin{align} | + | &= 3\,\textrm{.} |
- | + | \end{align}</math>}} | |
- | + | ||
- | & =3^{13}\ | + | |
- | + | ||
- | & =3^{13-6-6}=3^{1}=3 \\ | + | |
- | \end{align}</math> | + |
Version vom 13:58, 22. Sep. 2008
The numbers 9 and 27 can both be written as powers of 3,
Thus, all factors in the expression can be written using a common base and the whole product can be simplified using the power rules