Lösung 3.1:4a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.1:4a moved to Solution 3.1:4a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The decimal number |
- | < | + | <math>0.\text{16 }</math> |
- | {{ | + | can also be written as |
+ | <math>\text{16}\centerdot \text{1}0^{-\text{2}}\text{ }</math> | ||
+ | and then it is easier to see that, since | ||
+ | <math>\text{16}=\text{4}\centerdot \text{4}=\text{4}^{\text{2}}\text{ }</math> | ||
+ | and | ||
+ | <math>10^{-2}=\left( 10^{-1} \right)^{2}=0.1^{2}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \sqrt{0.16}=\sqrt{16\centerdot 10^{-2}}=\sqrt{16}\centerdot \sqrt{10^{-2}}=\sqrt{4^{2}}\centerdot \sqrt{0.1^{2}} \\ | ||
+ | & =4\centerdot 0.1=0.4 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Another alternative is, of course, to see directly that | ||
+ | <math>0.16=0.4\centerdot 0.4=0.4^{2}</math>, and then that | ||
+ | <math>\sqrt{0.16}=\sqrt{0.4^{2}}=0.4</math> |
Version vom 13:50, 22. Sep. 2008
The decimal number \displaystyle 0.\text{16 } can also be written as \displaystyle \text{16}\centerdot \text{1}0^{-\text{2}}\text{ } and then it is easier to see that, since \displaystyle \text{16}=\text{4}\centerdot \text{4}=\text{4}^{\text{2}}\text{ } and \displaystyle 10^{-2}=\left( 10^{-1} \right)^{2}=0.1^{2}
\displaystyle \begin{align} & \sqrt{0.16}=\sqrt{16\centerdot 10^{-2}}=\sqrt{16}\centerdot \sqrt{10^{-2}}=\sqrt{4^{2}}\centerdot \sqrt{0.1^{2}} \\ & =4\centerdot 0.1=0.4 \\ \end{align}
Another alternative is, of course, to see directly that
\displaystyle 0.16=0.4\centerdot 0.4=0.4^{2}, and then that
\displaystyle \sqrt{0.16}=\sqrt{0.4^{2}}=0.4