Lösung 3.1:4a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:4a moved to Solution 3.1:4a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The decimal number
-
<center> [[Image:3_1_4a.gif]] </center>
+
<math>0.\text{16 }</math>
-
{{NAVCONTENT_STOP}}
+
can also be written as
 +
<math>\text{16}\centerdot \text{1}0^{-\text{2}}\text{ }</math>
 +
and then it is easier to see that, since
 +
<math>\text{16}=\text{4}\centerdot \text{4}=\text{4}^{\text{2}}\text{ }</math>
 +
and
 +
<math>10^{-2}=\left( 10^{-1} \right)^{2}=0.1^{2}</math>
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& \sqrt{0.16}=\sqrt{16\centerdot 10^{-2}}=\sqrt{16}\centerdot \sqrt{10^{-2}}=\sqrt{4^{2}}\centerdot \sqrt{0.1^{2}} \\
 +
& =4\centerdot 0.1=0.4 \\
 +
\end{align}</math>
 +
 
 +
 
 +
Another alternative is, of course, to see directly that
 +
<math>0.16=0.4\centerdot 0.4=0.4^{2}</math>, and then that
 +
<math>\sqrt{0.16}=\sqrt{0.4^{2}}=0.4</math>

Version vom 13:50, 22. Sep. 2008

The decimal number \displaystyle 0.\text{16 } can also be written as \displaystyle \text{16}\centerdot \text{1}0^{-\text{2}}\text{ } and then it is easier to see that, since \displaystyle \text{16}=\text{4}\centerdot \text{4}=\text{4}^{\text{2}}\text{ } and \displaystyle 10^{-2}=\left( 10^{-1} \right)^{2}=0.1^{2}


\displaystyle \begin{align} & \sqrt{0.16}=\sqrt{16\centerdot 10^{-2}}=\sqrt{16}\centerdot \sqrt{10^{-2}}=\sqrt{4^{2}}\centerdot \sqrt{0.1^{2}} \\ & =4\centerdot 0.1=0.4 \\ \end{align}


Another alternative is, of course, to see directly that \displaystyle 0.16=0.4\centerdot 0.4=0.4^{2}, and then that \displaystyle \sqrt{0.16}=\sqrt{0.4^{2}}=0.4