Lösung 3.1:2f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.1:2f moved to Solution 3.1:2f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The cube root of a number is the same thing as the number raised to the power |
- | < | + | <math>{1}/{3}\;</math>, i.e. |
- | {{ | + | <math>\sqrt[3]{a}=a^{{1}/{3}\;}</math> |
+ | If we therefore write the number | ||
+ | <math>\text{8}</math> | ||
+ | as a product of its smallest possible integer factors | ||
+ | |||
+ | |||
+ | <math>8=2\centerdot 4=2\centerdot 2\centerdot 2=2^{3}</math> | ||
+ | |||
+ | |||
+ | we see that | ||
+ | |||
+ | |||
+ | <math>\sqrt[3]{8}=\sqrt[3]{2^{3}}=\left( 2^{3} \right)^{{1}/{3}\;}=2^{3\centerdot \frac{1}{3}}=2^{1}=2</math>. | ||
+ | |||
+ | NOTE: Taking the cube root can thus be seen as cancelling the operation of raising a number to the power | ||
+ | <math>\text{3}</math>, i.e. | ||
+ | <math>\sqrt[3]{5^{3}}=5,\quad \sqrt[3]{6^{3}}=6</math> | ||
+ | etc. |
Version vom 11:11, 22. Sep. 2008
The cube root of a number is the same thing as the number raised to the power \displaystyle {1}/{3}\;, i.e. \displaystyle \sqrt[3]{a}=a^{{1}/{3}\;} If we therefore write the number \displaystyle \text{8} as a product of its smallest possible integer factors
\displaystyle 8=2\centerdot 4=2\centerdot 2\centerdot 2=2^{3}
we see that
\displaystyle \sqrt[3]{8}=\sqrt[3]{2^{3}}=\left( 2^{3} \right)^{{1}/{3}\;}=2^{3\centerdot \frac{1}{3}}=2^{1}=2.
NOTE: Taking the cube root can thus be seen as cancelling the operation of raising a number to the power \displaystyle \text{3}, i.e. \displaystyle \sqrt[3]{5^{3}}=5,\quad \sqrt[3]{6^{3}}=6 etc.