Lösung 3.1:2b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.1:2b moved to Solution 3.1:2b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | That which is under the root sign is the same as |
- | < | + | <math>\left( -\text{3} \right)^{\text{2}}=\text{9 }</math> |
- | {{ | + | and because |
+ | <math>\text{9}=\text{3}\centerdot \text{3}=\text{3}^{\text{2}}</math>, hence | ||
+ | |||
+ | |||
+ | <math>\sqrt{\left( -3 \right)^{2}}=\sqrt{9}=9^{{1}/{2}\;}=\left( 3^{2} \right)^{{1}/{2}\;}=3^{2\centerdot \frac{1}{2}}=3^{1}=3</math> | ||
+ | |||
+ | |||
+ | NOTE: | ||
+ | The calculation | ||
+ | <math>\sqrt{\left( -3 \right)^{2}}=\left( \left( -3 \right)^{2} \right)^{{1}/{2}\;}=\left( -3 \right)^{2\centerdot \frac{1}{2}}=\left( -3 \right)^{1}=-3</math> | ||
+ | |||
+ | is wrong at the second equals sign. Remember that the power rules apply when the base is positive. |
Version vom 10:44, 22. Sep. 2008
That which is under the root sign is the same as \displaystyle \left( -\text{3} \right)^{\text{2}}=\text{9 } and because \displaystyle \text{9}=\text{3}\centerdot \text{3}=\text{3}^{\text{2}}, hence
\displaystyle \sqrt{\left( -3 \right)^{2}}=\sqrt{9}=9^{{1}/{2}\;}=\left( 3^{2} \right)^{{1}/{2}\;}=3^{2\centerdot \frac{1}{2}}=3^{1}=3
NOTE:
The calculation
\displaystyle \sqrt{\left( -3 \right)^{2}}=\left( \left( -3 \right)^{2} \right)^{{1}/{2}\;}=\left( -3 \right)^{2\centerdot \frac{1}{2}}=\left( -3 \right)^{1}=-3
is wrong at the second equals sign. Remember that the power rules apply when the base is positive.