Lösung 1.1:5c
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.1:5c moved to Solution 1.1:5c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | It is quite easy to see that |
- | < | + | |
- | < | + | |
- | {{ | + | <math>\begin{align} |
+ | & \frac{1}{2}=0.5 \\ | ||
+ | & \\ | ||
+ | & \frac{2}{3}=2\centerdot \frac{1}{3}=0.666... \\ | ||
+ | & \\ | ||
+ | & \frac{3}{5}=3\centerdot \frac{1}{5}=3\centerdot 0.2=0.6 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | <math></math> | ||
+ | |||
+ | |||
+ | which means that | ||
+ | |||
+ | |||
+ | <math>{1}/{2<{3}/{5<{2}/{3}\;}\;}\;</math> . | ||
+ | |||
+ | Because it is more difficult to evaluate the decimal expansion of | ||
+ | <math>{5}/{8}\;</math> | ||
+ | and | ||
+ | <math>{21}/{34}\;</math>, we compare instead | ||
+ | <math>{5}/{8}\;</math> | ||
+ | and | ||
+ | <math>{21}/{34}\;</math> | ||
+ | with | ||
+ | <math>{1}/{2,\ \ {3}/{5}\;}\;</math> and | ||
+ | <math>{2}/{3}\;</math> | ||
+ | by rewriting the fractions so that they have a common denominator. We start by comparing | ||
+ | <math>{5}/{8}\;</math> | ||
+ | with | ||
+ | <math>{1}/{2,\ \ {3}/{5}\;}\;</math> | ||
+ | and | ||
+ | <math>{2}/{3}\;</math> | ||
+ | |||
+ | |||
+ | * We have | ||
+ | <math>\frac{1}{2}=\frac{1\centerdot 4}{2\centerdot 4}=\frac{4}{8}</math> | ||
+ | and thus | ||
+ | <math>\frac{1}{2}<\frac{5}{8}</math> | ||
+ | . | ||
+ | |||
+ | * Then, we have | ||
+ | <math>\frac{3}{5}=\frac{3\centerdot 8}{5\centerdot 8}=\frac{24}{40}</math> | ||
+ | and | ||
+ | <math>\frac{5}{8}=\frac{5\centerdot 5}{8\centerdot 5}=\frac{25}{40}</math> | ||
+ | , which gives that | ||
+ | <math>\frac{3}{5}<\frac{5}{8}</math>. | ||
+ | |||
+ | * Finally, | ||
+ | <math>\frac{2}{3}=\frac{2\centerdot 8}{3\centerdot 8}=\frac{16}{24}</math> | ||
+ | and | ||
+ | <math>\frac{5}{8}=\frac{5\centerdot 3}{8\centerdot 3}=\frac{15}{24}</math>, and this gives that | ||
+ | <math>\frac{5}{8}<\frac{2}{3}</math>. | ||
+ | |||
+ | Thus, | ||
+ | <math>{1}/{2}\;<{3}/{5}\;<{5}/{8}\;<{2}/{3}\;</math>. | ||
+ | |||
+ | When we compare | ||
+ | <math>{21}/{34}\;</math> | ||
+ | with | ||
+ | <math>{1}/{2,\ \ {3}/{5}\;}\;</math> | ||
+ | and | ||
+ | <math>{2}/{3}\;</math>, we obtain: | ||
+ | |||
+ | * because | ||
+ | <math>\frac{1}{2}=\frac{1\centerdot 17}{2\centerdot 17}=\frac{17}{34}</math>, so | ||
+ | <math>\frac{1}{2}<\frac{21}{34}</math> | ||
+ | |||
+ | |||
+ | * furthermore, | ||
+ | <math>\frac{3}{5}=\frac{3\centerdot 34}{5\centerdot 34}=\frac{102}{170}</math> | ||
+ | and | ||
+ | <math>\frac{21}{34}=\frac{21\centerdot 5}{34\centerdot 5}=\frac{105}{170}</math>, i.e. | ||
+ | <math>\frac{3}{5}<\frac{21}{34}</math>. | ||
+ | |||
+ | * we have | ||
+ | <math>\frac{5}{8}=\frac{5\centerdot 17}{8\centerdot 17}=\frac{85}{136}</math> | ||
+ | and | ||
+ | <math>\frac{21}{34}=\frac{21\centerdot 4}{34\centerdot 4}=\frac{84}{136}</math>, which gives that | ||
+ | <math>\frac{21}{34}<\frac{5}{8}</math>. | ||
+ | |||
+ | The answer is | ||
+ | <math>{1}/{2}\;<{3}/{5}\;<{21}/{34}\;<{5}/{8}\;<{2}/{3}\;</math>. |
Version vom 09:21, 22. Sep. 2008
It is quite easy to see that
\displaystyle \begin{align}
& \frac{1}{2}=0.5 \\
& \\
& \frac{2}{3}=2\centerdot \frac{1}{3}=0.666... \\
& \\
& \frac{3}{5}=3\centerdot \frac{1}{5}=3\centerdot 0.2=0.6 \\
\end{align}
\displaystyle
which means that
\displaystyle {1}/{2<{3}/{5<{2}/{3}\;}\;}\; .
Because it is more difficult to evaluate the decimal expansion of \displaystyle {5}/{8}\; and \displaystyle {21}/{34}\;, we compare instead \displaystyle {5}/{8}\; and \displaystyle {21}/{34}\; with \displaystyle {1}/{2,\ \ {3}/{5}\;}\; and \displaystyle {2}/{3}\; by rewriting the fractions so that they have a common denominator. We start by comparing \displaystyle {5}/{8}\; with \displaystyle {1}/{2,\ \ {3}/{5}\;}\; and \displaystyle {2}/{3}\;
- We have
\displaystyle \frac{1}{2}=\frac{1\centerdot 4}{2\centerdot 4}=\frac{4}{8} and thus \displaystyle \frac{1}{2}<\frac{5}{8} .
- Then, we have
\displaystyle \frac{3}{5}=\frac{3\centerdot 8}{5\centerdot 8}=\frac{24}{40} and \displaystyle \frac{5}{8}=\frac{5\centerdot 5}{8\centerdot 5}=\frac{25}{40} , which gives that \displaystyle \frac{3}{5}<\frac{5}{8}.
- Finally,
\displaystyle \frac{2}{3}=\frac{2\centerdot 8}{3\centerdot 8}=\frac{16}{24} and \displaystyle \frac{5}{8}=\frac{5\centerdot 3}{8\centerdot 3}=\frac{15}{24}, and this gives that \displaystyle \frac{5}{8}<\frac{2}{3}.
Thus, \displaystyle {1}/{2}\;<{3}/{5}\;<{5}/{8}\;<{2}/{3}\;.
When we compare \displaystyle {21}/{34}\; with \displaystyle {1}/{2,\ \ {3}/{5}\;}\; and \displaystyle {2}/{3}\;, we obtain:
- because
\displaystyle \frac{1}{2}=\frac{1\centerdot 17}{2\centerdot 17}=\frac{17}{34}, so \displaystyle \frac{1}{2}<\frac{21}{34}
- furthermore,
\displaystyle \frac{3}{5}=\frac{3\centerdot 34}{5\centerdot 34}=\frac{102}{170} and \displaystyle \frac{21}{34}=\frac{21\centerdot 5}{34\centerdot 5}=\frac{105}{170}, i.e. \displaystyle \frac{3}{5}<\frac{21}{34}.
- we have
\displaystyle \frac{5}{8}=\frac{5\centerdot 17}{8\centerdot 17}=\frac{85}{136} and \displaystyle \frac{21}{34}=\frac{21\centerdot 4}{34\centerdot 4}=\frac{84}{136}, which gives that \displaystyle \frac{21}{34}<\frac{5}{8}.
The answer is \displaystyle {1}/{2}\;<{3}/{5}\;<{21}/{34}\;<{5}/{8}\;<{2}/{3}\;.