Lösung 1.1:5c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.1:5c moved to Solution 1.1:5c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
It is quite easy to see that
-
<center> [[Image:1_1_5c-1(2).gif]] </center>
+
 
-
<center> [[Image:1_1_5c-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
<math>\begin{align}
 +
& \frac{1}{2}=0.5 \\
 +
& \\
 +
& \frac{2}{3}=2\centerdot \frac{1}{3}=0.666... \\
 +
& \\
 +
& \frac{3}{5}=3\centerdot \frac{1}{5}=3\centerdot 0.2=0.6 \\
 +
\end{align}</math>
 +
 
 +
<math></math>
 +
 
 +
 
 +
which means that
 +
 
 +
 +
<math>{1}/{2<{3}/{5<{2}/{3}\;}\;}\;</math> .
 +
 
 +
Because it is more difficult to evaluate the decimal expansion of
 +
<math>{5}/{8}\;</math>
 +
and
 +
<math>{21}/{34}\;</math>, we compare instead
 +
<math>{5}/{8}\;</math>
 +
and
 +
<math>{21}/{34}\;</math>
 +
with
 +
<math>{1}/{2,\ \ {3}/{5}\;}\;</math> and
 +
<math>{2}/{3}\;</math>
 +
by rewriting the fractions so that they have a common denominator. We start by comparing
 +
<math>{5}/{8}\;</math>
 +
with
 +
<math>{1}/{2,\ \ {3}/{5}\;}\;</math>
 +
and
 +
<math>{2}/{3}\;</math>
 +
 
 +
 
 +
* We have
 +
<math>\frac{1}{2}=\frac{1\centerdot 4}{2\centerdot 4}=\frac{4}{8}</math>
 +
and thus
 +
<math>\frac{1}{2}<\frac{5}{8}</math>
 +
.
 +
 
 +
* Then, we have
 +
<math>\frac{3}{5}=\frac{3\centerdot 8}{5\centerdot 8}=\frac{24}{40}</math>
 +
and
 +
<math>\frac{5}{8}=\frac{5\centerdot 5}{8\centerdot 5}=\frac{25}{40}</math>
 +
, which gives that
 +
<math>\frac{3}{5}<\frac{5}{8}</math>.
 +
 
 +
* Finally,
 +
<math>\frac{2}{3}=\frac{2\centerdot 8}{3\centerdot 8}=\frac{16}{24}</math>
 +
and
 +
<math>\frac{5}{8}=\frac{5\centerdot 3}{8\centerdot 3}=\frac{15}{24}</math>, and this gives that
 +
<math>\frac{5}{8}<\frac{2}{3}</math>.
 +
 
 +
Thus,
 +
<math>{1}/{2}\;<{3}/{5}\;<{5}/{8}\;<{2}/{3}\;</math>.
 +
 +
When we compare
 +
<math>{21}/{34}\;</math>
 +
with
 +
<math>{1}/{2,\ \ {3}/{5}\;}\;</math>
 +
and
 +
<math>{2}/{3}\;</math>, we obtain:
 +
 
 +
* because
 +
<math>\frac{1}{2}=\frac{1\centerdot 17}{2\centerdot 17}=\frac{17}{34}</math>, so
 +
<math>\frac{1}{2}<\frac{21}{34}</math>
 +
 
 +
 
 +
* furthermore,
 +
<math>\frac{3}{5}=\frac{3\centerdot 34}{5\centerdot 34}=\frac{102}{170}</math>
 +
and
 +
<math>\frac{21}{34}=\frac{21\centerdot 5}{34\centerdot 5}=\frac{105}{170}</math>, i.e.
 +
<math>\frac{3}{5}<\frac{21}{34}</math>.
 +
 
 +
* we have
 +
<math>\frac{5}{8}=\frac{5\centerdot 17}{8\centerdot 17}=\frac{85}{136}</math>
 +
and
 +
<math>\frac{21}{34}=\frac{21\centerdot 4}{34\centerdot 4}=\frac{84}{136}</math>, which gives that
 +
<math>\frac{21}{34}<\frac{5}{8}</math>.
 +
 
 +
The answer is
 +
<math>{1}/{2}\;<{3}/{5}\;<{21}/{34}\;<{5}/{8}\;<{2}/{3}\;</math>.

Version vom 09:21, 22. Sep. 2008

It is quite easy to see that


\displaystyle \begin{align} & \frac{1}{2}=0.5 \\ & \\ & \frac{2}{3}=2\centerdot \frac{1}{3}=0.666... \\ & \\ & \frac{3}{5}=3\centerdot \frac{1}{5}=3\centerdot 0.2=0.6 \\ \end{align}

\displaystyle


which means that


\displaystyle {1}/{2<{3}/{5<{2}/{3}\;}\;}\; .

Because it is more difficult to evaluate the decimal expansion of \displaystyle {5}/{8}\; and \displaystyle {21}/{34}\;, we compare instead \displaystyle {5}/{8}\; and \displaystyle {21}/{34}\; with \displaystyle {1}/{2,\ \ {3}/{5}\;}\; and \displaystyle {2}/{3}\; by rewriting the fractions so that they have a common denominator. We start by comparing \displaystyle {5}/{8}\; with \displaystyle {1}/{2,\ \ {3}/{5}\;}\; and \displaystyle {2}/{3}\;


  • We have

\displaystyle \frac{1}{2}=\frac{1\centerdot 4}{2\centerdot 4}=\frac{4}{8} and thus \displaystyle \frac{1}{2}<\frac{5}{8} .

  • Then, we have

\displaystyle \frac{3}{5}=\frac{3\centerdot 8}{5\centerdot 8}=\frac{24}{40} and \displaystyle \frac{5}{8}=\frac{5\centerdot 5}{8\centerdot 5}=\frac{25}{40} , which gives that \displaystyle \frac{3}{5}<\frac{5}{8}.

  • Finally,

\displaystyle \frac{2}{3}=\frac{2\centerdot 8}{3\centerdot 8}=\frac{16}{24} and \displaystyle \frac{5}{8}=\frac{5\centerdot 3}{8\centerdot 3}=\frac{15}{24}, and this gives that \displaystyle \frac{5}{8}<\frac{2}{3}.

Thus, \displaystyle {1}/{2}\;<{3}/{5}\;<{5}/{8}\;<{2}/{3}\;.

When we compare \displaystyle {21}/{34}\; with \displaystyle {1}/{2,\ \ {3}/{5}\;}\; and \displaystyle {2}/{3}\;, we obtain:

  • because

\displaystyle \frac{1}{2}=\frac{1\centerdot 17}{2\centerdot 17}=\frac{17}{34}, so \displaystyle \frac{1}{2}<\frac{21}{34}


  • furthermore,

\displaystyle \frac{3}{5}=\frac{3\centerdot 34}{5\centerdot 34}=\frac{102}{170} and \displaystyle \frac{21}{34}=\frac{21\centerdot 5}{34\centerdot 5}=\frac{105}{170}, i.e. \displaystyle \frac{3}{5}<\frac{21}{34}.

  • we have

\displaystyle \frac{5}{8}=\frac{5\centerdot 17}{8\centerdot 17}=\frac{85}{136} and \displaystyle \frac{21}{34}=\frac{21\centerdot 4}{34\centerdot 4}=\frac{84}{136}, which gives that \displaystyle \frac{21}{34}<\frac{5}{8}.

The answer is \displaystyle {1}/{2}\;<{3}/{5}\;<{21}/{34}\;<{5}/{8}\;<{2}/{3}\;.