Lösung 1.1:5a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 +
2, 3/5, 5/3 and 7/3 .
 +
It is easier to see the mutual order of the numbers if we write them as decimals.
It is easier to see the mutual order of the numbers if we write them as decimals.
Zeile 13: Zeile 15:
& \\
& \\
& \frac{7}{3}=\frac{6+1}{3}=2+\frac{1}{3}=2.333... \\
& \frac{7}{3}=\frac{6+1}{3}=2+\frac{1}{3}=2.333... \\
 +
\end{align}</math>
 +
 +
and then we see that.
 +
 +
 +
<math>\begin{align}
 +
& \frac{3}{5}<\frac{5}{3}<2<\frac{7}{3} \\
 +
& \\
\end{align}</math>
\end{align}</math>

Version vom 09:14, 22. Sep. 2008

2, 3/5, 5/3 and 7/3 .

It is easier to see the mutual order of the numbers if we write them as decimals.

Because we know that \displaystyle {1}/{5}\;=0.2 and \displaystyle {1}/{3}\;=0.333..., we obtain


\displaystyle \begin{align} & \frac{3}{5}=3\centerdot \frac{3}{5}=3.02=0.6 \\ & \\ & \frac{5}{3}=\frac{3+2}{3}=1+\frac{2}{3}=1.666... \\ & \\ & \frac{7}{3}=\frac{6+1}{3}=2+\frac{1}{3}=2.333... \\ \end{align}

and then we see that.


\displaystyle \begin{align} & \frac{3}{5}<\frac{5}{3}<2<\frac{7}{3} \\ & \\ \end{align}