Lösung 2.3:7c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Lösning 2.3:7c moved to Solution 2.3:7c: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | If we complete the square | 
| - | + | ||
| - | {{ | + | |
| + | <math>x^{2}+x+1=\left( x+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}+1=\left( x+\frac{1}{2} \right)^{2}+\frac{3}{4}</math> | ||
| + | |||
| + | |||
| + | we see on the right-hand side that we can make the expression arbitrarily large simply by choosing  | ||
| + | <math>x+\frac{1}{2}</math> | ||
| + | sufficiently large. Hence, there is no maximum value. | ||
Version vom 11:18, 21. Sep. 2008
If we complete the square
\displaystyle x^{2}+x+1=\left( x+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}+1=\left( x+\frac{1}{2} \right)^{2}+\frac{3}{4}
we see on the right-hand side that we can make the expression arbitrarily large simply by choosing 
\displaystyle x+\frac{1}{2}
sufficiently large. Hence, there is no maximum value.
 
		  