Lösung 2.3:5b
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.3:5b moved to Solution 2.3:5b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Instead of randomly trying different values of |
- | < | + | <math>x</math> |
- | {{ | + | , it is better investigate the second-degree expression by completing the square: |
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 4x^{2}-28x+48=4\left( x^{2}-7x+12 \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+12 \right) \\ | ||
+ | & =4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{48}{4} \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{1}{4} \right)=4\left( x-\frac{7}{2} \right)^{2}-1. \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | In the expression in which the square has been completed, we see that if, e.g. | ||
+ | <math>x={7}/{2}\;</math>, then the whole expression is negative and equal to | ||
+ | <math>-\text{1}</math>. | ||
+ | |||
+ | NOTE: All values of | ||
+ | <math>x</math> | ||
+ | between | ||
+ | <math>\text{3}</math> | ||
+ | and | ||
+ | <math>\text{4}</math> | ||
+ | give a negative value for the expression. |
Version vom 09:57, 21. Sep. 2008
Instead of randomly trying different values of \displaystyle x , it is better investigate the second-degree expression by completing the square:
\displaystyle \begin{align}
& 4x^{2}-28x+48=4\left( x^{2}-7x+12 \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+12 \right) \\
& =4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{48}{4} \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{1}{4} \right)=4\left( x-\frac{7}{2} \right)^{2}-1. \\
\end{align}
In the expression in which the square has been completed, we see that if, e.g.
\displaystyle x={7}/{2}\;, then the whole expression is negative and equal to
\displaystyle -\text{1}.
NOTE: All values of \displaystyle x between \displaystyle \text{3} and \displaystyle \text{4} give a negative value for the expression.