Lösung 2.3:2d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:2d moved to Solution 2.3:2d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The equation can be written in normalized form (i.e. the coefficient in front of
-
<center> [[Image:2_3_2d.gif]] </center>
+
<math>x^{\text{2}}</math>
-
{{NAVCONTENT_STOP}}
+
is
 +
<math>1</math>
 +
) by dividing both sides by
 +
<math>4</math>,
 +
 
 +
 
 +
<math>x^{2}-7x+\frac{13}{4}=0</math>
 +
 
 +
 
 +
Completing the square on the left-hand side,
 +
 
 +
 
 +
<math>\begin{align}
 +
& x^{2}-7x+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{13}{4} \\
 +
& =\left( x-\frac{7}{2} \right)^{2}-\frac{36}{4}=\left( x-\frac{7}{2} \right)^{2}-9 \\
 +
\end{align}</math>
 +
 
 +
The equation can therefore be written as
 +
 
 +
 
 +
<math>\left( x-\frac{7}{2} \right)^{2}-9=0</math>
 +
 +
and taking the square root gives the solutions as
 +
 
 +
 
 +
<math>x-\frac{7}{2}=\sqrt{9}=3</math>
 +
i.e.
 +
<math>x=\frac{7}{2}+3=\frac{13}{2},</math>
 +
 
 +
 
 +
<math>x-\frac{7}{2}=-\sqrt{9}=-3</math>
 +
i.e.
 +
<math>x=\frac{7}{2}-3=\frac{1}{2}.</math>
 +
 
 +
 
 +
As an extra check, we substitute x=1/2 and x=13/2 into the equation:
 +
 
 +
 
 +
<math>x=\text{1}/\text{2}</math>: LHS
 +
<math>=4\centerdot \left( \frac{1}{2} \right)^{2}-28\centerdot \frac{1}{2}+13=4\centerdot \frac{1}{4}-14+13=1-14+13=</math>
 +
RHS
 +
 
 +
<math>x=\text{13}/\text{2}</math>: LHS
 +
<math>=4\centerdot \left( \frac{13}{2} \right)^{2}-28\centerdot \frac{13}{2}+13=4\centerdot \frac{169}{4}-14\centerdot 13+13=169-182+13=</math>
 +
RHS

Version vom 13:53, 20. Sep. 2008

The equation can be written in normalized form (i.e. the coefficient in front of \displaystyle x^{\text{2}} is \displaystyle 1 ) by dividing both sides by \displaystyle 4,


\displaystyle x^{2}-7x+\frac{13}{4}=0


Completing the square on the left-hand side,


\displaystyle \begin{align} & x^{2}-7x+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{13}{4} \\ & =\left( x-\frac{7}{2} \right)^{2}-\frac{36}{4}=\left( x-\frac{7}{2} \right)^{2}-9 \\ \end{align}

The equation can therefore be written as


\displaystyle \left( x-\frac{7}{2} \right)^{2}-9=0

and taking the square root gives the solutions as


\displaystyle x-\frac{7}{2}=\sqrt{9}=3 i.e. \displaystyle x=\frac{7}{2}+3=\frac{13}{2},


\displaystyle x-\frac{7}{2}=-\sqrt{9}=-3 i.e. \displaystyle x=\frac{7}{2}-3=\frac{1}{2}.


As an extra check, we substitute x=1/2 and x=13/2 into the equation:


\displaystyle x=\text{1}/\text{2}: LHS \displaystyle =4\centerdot \left( \frac{1}{2} \right)^{2}-28\centerdot \frac{1}{2}+13=4\centerdot \frac{1}{4}-14+13=1-14+13= RHS

\displaystyle x=\text{13}/\text{2}: LHS \displaystyle =4\centerdot \left( \frac{13}{2} \right)^{2}-28\centerdot \frac{13}{2}+13=4\centerdot \frac{169}{4}-14\centerdot 13+13=169-182+13= RHS