Lösung 2.3:2d
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.3:2d moved to Solution 2.3:2d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The equation can be written in normalized form (i.e. the coefficient in front of |
- | < | + | <math>x^{\text{2}}</math> |
- | {{ | + | is |
+ | <math>1</math> | ||
+ | ) by dividing both sides by | ||
+ | <math>4</math>, | ||
+ | |||
+ | |||
+ | <math>x^{2}-7x+\frac{13}{4}=0</math> | ||
+ | |||
+ | |||
+ | Completing the square on the left-hand side, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x^{2}-7x+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{13}{4} \\ | ||
+ | & =\left( x-\frac{7}{2} \right)^{2}-\frac{36}{4}=\left( x-\frac{7}{2} \right)^{2}-9 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | The equation can therefore be written as | ||
+ | |||
+ | |||
+ | <math>\left( x-\frac{7}{2} \right)^{2}-9=0</math> | ||
+ | |||
+ | and taking the square root gives the solutions as | ||
+ | |||
+ | |||
+ | <math>x-\frac{7}{2}=\sqrt{9}=3</math> | ||
+ | i.e. | ||
+ | <math>x=\frac{7}{2}+3=\frac{13}{2},</math> | ||
+ | |||
+ | |||
+ | <math>x-\frac{7}{2}=-\sqrt{9}=-3</math> | ||
+ | i.e. | ||
+ | <math>x=\frac{7}{2}-3=\frac{1}{2}.</math> | ||
+ | |||
+ | |||
+ | As an extra check, we substitute x=1/2 and x=13/2 into the equation: | ||
+ | |||
+ | |||
+ | <math>x=\text{1}/\text{2}</math>: LHS | ||
+ | <math>=4\centerdot \left( \frac{1}{2} \right)^{2}-28\centerdot \frac{1}{2}+13=4\centerdot \frac{1}{4}-14+13=1-14+13=</math> | ||
+ | RHS | ||
+ | |||
+ | <math>x=\text{13}/\text{2}</math>: LHS | ||
+ | <math>=4\centerdot \left( \frac{13}{2} \right)^{2}-28\centerdot \frac{13}{2}+13=4\centerdot \frac{169}{4}-14\centerdot 13+13=169-182+13=</math> | ||
+ | RHS |
Version vom 13:53, 20. Sep. 2008
The equation can be written in normalized form (i.e. the coefficient in front of \displaystyle x^{\text{2}} is \displaystyle 1 ) by dividing both sides by \displaystyle 4,
\displaystyle x^{2}-7x+\frac{13}{4}=0
Completing the square on the left-hand side,
\displaystyle \begin{align}
& x^{2}-7x+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{13}{4} \\
& =\left( x-\frac{7}{2} \right)^{2}-\frac{36}{4}=\left( x-\frac{7}{2} \right)^{2}-9 \\
\end{align}
The equation can therefore be written as
\displaystyle \left( x-\frac{7}{2} \right)^{2}-9=0
and taking the square root gives the solutions as
\displaystyle x-\frac{7}{2}=\sqrt{9}=3
i.e.
\displaystyle x=\frac{7}{2}+3=\frac{13}{2},
\displaystyle x-\frac{7}{2}=-\sqrt{9}=-3
i.e.
\displaystyle x=\frac{7}{2}-3=\frac{1}{2}.
As an extra check, we substitute x=1/2 and x=13/2 into the equation:
\displaystyle x=\text{1}/\text{2}: LHS
\displaystyle =4\centerdot \left( \frac{1}{2} \right)^{2}-28\centerdot \frac{1}{2}+13=4\centerdot \frac{1}{4}-14+13=1-14+13=
RHS
\displaystyle x=\text{13}/\text{2}: LHS \displaystyle =4\centerdot \left( \frac{13}{2} \right)^{2}-28\centerdot \frac{13}{2}+13=4\centerdot \frac{169}{4}-14\centerdot 13+13=169-182+13= RHS