Lösung 1.1:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
Zeile 15: | Zeile 15: | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 1</math>. | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 1</math>. | ||
- | {{ | + | {{NAVCONTENT_STOP}} |
Version vom 06:41, 19. Sep. 2008
Just as in exercise c, we calculate the innermost bracket
- \displaystyle 3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5 = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,})-5
and work our way successively outwards,
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\firstcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\secondcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5\,.
All that remains is to combine the terms from left to right
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \firstcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \secondcbox{#FFEEAA;}{\,3-(-3)\,}{3+3}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \secondcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 1.