Lösung 2.2:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:6b moved to Solution 2.2:6b: Robot: moved page)
Zeile 1: Zeile 1:
 +
Because the point of intersection lies on both lines, it must satisfy the equations of both lines
 +
 +
 +
<math>y=-x+5</math>
 +
and
 +
<math>x=0</math>,
 +
 +
where
 +
<math>x=0</math>
 +
is the equation of the
 +
<math>y</math>
 +
-axis. Substituting the other equation,
 +
<math>x=0</math>, into the first equation gives
 +
<math>y=-0+5=5</math>. This means that the point of intersection is
 +
<math>\left( 0 \right.,\left. 5 \right)</math>.
 +
 +
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
[[Image:2_2_6_b.gif]]
[[Image:2_2_6_b.gif]]
-
<center> [[Image:2_2_6b.gif]] </center>
+
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 10:24, 18. Sep. 2008

Because the point of intersection lies on both lines, it must satisfy the equations of both lines


\displaystyle y=-x+5 and \displaystyle x=0,

where \displaystyle x=0 is the equation of the \displaystyle y -axis. Substituting the other equation, \displaystyle x=0, into the first equation gives \displaystyle y=-0+5=5. This means that the point of intersection is \displaystyle \left( 0 \right.,\left. 5 \right).