Lösung 2.2:1d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:1d moved to Solution 2.2:1d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Move
-
<center> [[Image:2_2_1d.gif]] </center>
+
<math>x</math>
-
{{NAVCONTENT_STOP}}
+
to the left-hand side by subtracting
 +
<math>2x</math>
 +
from both sides,
 +
 
 +
 
 +
<math>5x+7-2x=2x-6-2x</math>
 +
 
 +
 
 +
which gives
 +
 
 +
 
 +
<math>3x+7=-6</math>
 +
 
 +
 
 +
Subtract
 +
<math>7</math>
 +
from both sides,
 +
 
 +
 
 +
<math>3x+7-7=-6-7</math>
 +
 
 +
 
 +
so that the term
 +
<math>3x</math>
 +
alone remains on the left-hand side
 +
 
 +
 
 +
<math>3x=-13</math>
 +
 
 +
 
 +
Then, divide both sides by
 +
<math>3</math>
 +
 
 +
 
 +
 
 +
<math>\frac{3x}{3}=-\frac{13}{3}</math>
 +
 
 +
 
 +
to get x:
 +
 
 +
 
 +
<math>x=-\frac{13}{3}</math>

Version vom 14:28, 16. Sep. 2008

Move \displaystyle x to the left-hand side by subtracting \displaystyle 2x from both sides,


\displaystyle 5x+7-2x=2x-6-2x


which gives


\displaystyle 3x+7=-6


Subtract \displaystyle 7 from both sides,


\displaystyle 3x+7-7=-6-7


so that the term \displaystyle 3x alone remains on the left-hand side


\displaystyle 3x=-13


Then, divide both sides by \displaystyle 3


\displaystyle \frac{3x}{3}=-\frac{13}{3}


to get x:


\displaystyle x=-\frac{13}{3}