Lösung 2.1:7a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.1:7a moved to Solution 2.1:7a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | If we multiply the top and bottom of the first fraction by | |
- | < | + | <math>x+5</math> |
- | {{ | + | and the second by |
+ | <math>x+3</math>, then they will both have the same numerator and we can work out the expression by subtracting the numerators: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{2}{x+3}-\frac{2}{x+5}=\frac{2}{x+3}\centerdot \frac{x+5}{x+5}-\frac{2}{x+5}\centerdot \frac{x+3}{x+3} \\ | ||
+ | & =\frac{2\left( x+5 \right)-2\left( x+3 \right)}{\left( x+3 \right)\left( x+5 \right)}=\frac{2x+10-2x-6}{\left( x+3 \right)\left( x+5 \right)}=\frac{4}{\left( x+3 \right)\left( x+5 \right)} \\ | ||
+ | \end{align}</math> |
Version vom 12:38, 16. Sep. 2008
If we multiply the top and bottom of the first fraction by \displaystyle x+5 and the second by \displaystyle x+3, then they will both have the same numerator and we can work out the expression by subtracting the numerators:
\displaystyle \begin{align}
& \frac{2}{x+3}-\frac{2}{x+5}=\frac{2}{x+3}\centerdot \frac{x+5}{x+5}-\frac{2}{x+5}\centerdot \frac{x+3}{x+3} \\
& =\frac{2\left( x+5 \right)-2\left( x+3 \right)}{\left( x+3 \right)\left( x+5 \right)}=\frac{2x+10-2x-6}{\left( x+3 \right)\left( x+5 \right)}=\frac{4}{\left( x+3 \right)\left( x+5 \right)} \\
\end{align}