Lösung 2.1:6c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.1:6c moved to Solution 2.1:6c: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | { | + | Because the numerators are |
| - | < | + | <math>a^{2}-ab=a\left( a-b \right)</math> |
| - | {{ | + | and |
| + | <math>a-b</math>, both terms will have a common denominator | ||
| + | <math>a\left( a-b \right)</math> | ||
| + | if the top and bottom of the second term are multiplied by | ||
| + | <math>a</math>: | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{2a+b}{a^{2}-b}-\frac{2}{a-b}=\frac{2a+b}{a\left( a-b \right)}-\frac{2}{a-b}\centerdot \frac{a}{a} \\ | ||
| + | & =\frac{2a+b-2a}{a\left( a-b \right)}=\frac{b}{a\left( a-b \right)} \\ | ||
| + | \end{align}</math> | ||
Version vom 11:03, 16. Sep. 2008
Because the numerators are \displaystyle a^{2}-ab=a\left( a-b \right) and \displaystyle a-b, both terms will have a common denominator \displaystyle a\left( a-b \right) if the top and bottom of the second term are multiplied by \displaystyle a:
\displaystyle \begin{align}
& \frac{2a+b}{a^{2}-b}-\frac{2}{a-b}=\frac{2a+b}{a\left( a-b \right)}-\frac{2}{a-b}\centerdot \frac{a}{a} \\
& =\frac{2a+b-2a}{a\left( a-b \right)}=\frac{b}{a\left( a-b \right)} \\
\end{align}
