Lösung 2.1:5c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:5c moved to Solution 2.1:5c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The fraction can be further simplified if it is possible to factorize and eliminate common factors
-
<center> [[Image:2_1_5c.gif]] </center>
+
from the numerator and denominator. Both numerator and denominator are already factorized to a certain extent, but we can go further with the numerator and break it up into linear factors by using the conjugate rule:
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
<math>\begin{align}
 +
& 3x^{2}-12=3\left( x^{2}-4 \right)=3\left( x+2 \right)\left( x-2 \right) \\
 +
& \\
 +
& x^{2}-1=\left( x+1 \right)\left( x-1 \right) \\
 +
\end{align}</math>
 +
 
 +
The whole expression is therefore equal to
 +
 
 +
 
 +
<math>\frac{3\left( x+2 \right)\left( x-2 \right)\left( x+1 \right)\left( x-1 \right)}{\left( x+1 \right)\left( x+2 \right)}=3\left( x-2 \right)\left( x-1 \right)</math>
 +
 
 +
 
 +
NOTE: One can of course expand out the expression to get
 +
<math>3x^{2}-9x+6</math>
 +
as the answer.

Version vom 09:26, 16. Sep. 2008

The fraction can be further simplified if it is possible to factorize and eliminate common factors from the numerator and denominator. Both numerator and denominator are already factorized to a certain extent, but we can go further with the numerator and break it up into linear factors by using the conjugate rule:


\displaystyle \begin{align} & 3x^{2}-12=3\left( x^{2}-4 \right)=3\left( x+2 \right)\left( x-2 \right) \\ & \\ & x^{2}-1=\left( x+1 \right)\left( x-1 \right) \\ \end{align}

The whole expression is therefore equal to


\displaystyle \frac{3\left( x+2 \right)\left( x-2 \right)\left( x+1 \right)\left( x-1 \right)}{\left( x+1 \right)\left( x+2 \right)}=3\left( x-2 \right)\left( x-1 \right)


NOTE: One can of course expand out the expression to get \displaystyle 3x^{2}-9x+6 as the answer.