Lösung 2.1:4a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.1:4a moved to Solution 2.1:4a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | First, we multiply the second bracket by |
- | < | + | <math>x</math> |
- | {{ | + | from the first bracket, |
+ | |||
+ | |||
+ | <math>\left( x+2 \right)\left( 3x^{2}-x+5 \right)=x\centerdot 3x^{2}-x\centerdot x+x\centerdot 5+...</math> | ||
+ | |||
+ | |||
+ | Then, do the same for | ||
+ | <math>2</math> | ||
+ | from the first bracket: | ||
+ | |||
+ | |||
+ | <math>\left( x+2 \right)\left( 3x^{2}-x+5 \right)=3x^{3}-x^{2}+5x+2\centerdot 3x^{2}-2\centerdot x+2\centerdot 5</math> | ||
+ | |||
+ | |||
+ | Now, collect together | ||
+ | <math>x^{3}</math>-, | ||
+ | <math>x^{2}</math>-, | ||
+ | <math>x</math>- and the constant terms: | ||
+ | |||
+ | |||
+ | <math>3x^{3}+\left( -1+6 \right)x^{2}+\left( 5-2 \right)x+10=3x^{3}+5x^{2}+3x+10</math> | ||
+ | |||
+ | |||
+ | The coefficient in front of | ||
+ | <math>x^{2}</math> | ||
+ | is | ||
+ | <math>5</math> | ||
+ | and the coefficient in front of x is | ||
+ | <math>3</math>. |
Version vom 13:42, 15. Sep. 2008
First, we multiply the second bracket by \displaystyle x from the first bracket,
\displaystyle \left( x+2 \right)\left( 3x^{2}-x+5 \right)=x\centerdot 3x^{2}-x\centerdot x+x\centerdot 5+...
Then, do the same for
\displaystyle 2
from the first bracket:
\displaystyle \left( x+2 \right)\left( 3x^{2}-x+5 \right)=3x^{3}-x^{2}+5x+2\centerdot 3x^{2}-2\centerdot x+2\centerdot 5
Now, collect together
\displaystyle x^{3}-,
\displaystyle x^{2}-,
\displaystyle x- and the constant terms:
\displaystyle 3x^{3}+\left( -1+6 \right)x^{2}+\left( 5-2 \right)x+10=3x^{3}+5x^{2}+3x+10
The coefficient in front of
\displaystyle x^{2}
is
\displaystyle 5
and the coefficient in front of x is
\displaystyle 3.