Lösung 1.3:6e
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.3:6e moved to Solution 1.3:6e: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Both |
- | < | + | <math>125</math> |
- | {{ | + | and |
+ | <math>625</math> | ||
+ | can be written as powers of | ||
+ | <math>5</math>, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 125=5\centerdot 5=5\centerdot 5\centerdot 5=5^{3} \\ | ||
+ | & \\ | ||
+ | & 625=5\centerdot 125=5\centerdot 5^{3}=5^{4} \\ | ||
+ | & \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | and this means that | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 125^{\frac{1}{2}}=\left( 5^{3} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{1}{2}}=5^{\frac{3}{2}} \\ | ||
+ | & \\ | ||
+ | & 625=\left( 5^{4} \right)^{\frac{1}{3}}=5^{4\centerdot \frac{1}{3}}=5^{\frac{4}{3}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | From this, we see that | ||
+ | <math>125^{\frac{1}{2}}>625^{\frac{1}{3}}</math>, since the exponent | ||
+ | <math>{3}/{2}\;</math> | ||
+ | is bigger than | ||
+ | <math>{4}/{3}\;</math> | ||
+ | and the base | ||
+ | <math>5</math> | ||
+ | is bigger than | ||
+ | <math>1</math>. |
Version vom 12:59, 15. Sep. 2008
Both \displaystyle 125 and \displaystyle 625 can be written as powers of \displaystyle 5,
\displaystyle \begin{align}
& 125=5\centerdot 5=5\centerdot 5\centerdot 5=5^{3} \\
& \\
& 625=5\centerdot 125=5\centerdot 5^{3}=5^{4} \\
& \\
\end{align}
and this means that
\displaystyle \begin{align}
& 125^{\frac{1}{2}}=\left( 5^{3} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{1}{2}}=5^{\frac{3}{2}} \\
& \\
& 625=\left( 5^{4} \right)^{\frac{1}{3}}=5^{4\centerdot \frac{1}{3}}=5^{\frac{4}{3}} \\
\end{align}
From this, we see that
\displaystyle 125^{\frac{1}{2}}>625^{\frac{1}{3}}, since the exponent
\displaystyle {3}/{2}\;
is bigger than
\displaystyle {4}/{3}\;
and the base
\displaystyle 5
is bigger than
\displaystyle 1.