Lösung 1.3:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.3:4c moved to Solution 1.3:4c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | The whole expression consists of factors having a base of | |
- | < | + | <math>5</math>; |
- | {{ | + | |
+ | so the power rules can be use to | ||
+ | simplify the expression first: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{5^{12}}{5^{-4}}\centerdot \left( 5^{2} \right)^{-6}=\frac{5^{12}}{5^{-4}}\centerdot 5^{2\centerdot \left( -6 \right)}=\frac{5^{12}}{5^{-4}}\centerdot 5^{-12}=\frac{5^{12}\centerdot 5^{-12}}{5^{-4}} \\ | ||
+ | & \\ | ||
+ | & =\frac{5^{12-12}}{5^{-4}}=\frac{5^{0}}{5^{-4}}=5^{0-\left( -4 \right)}=5^{4}=5\centerdot 5\centerdot 5\centerdot 5=625 \\ | ||
+ | \end{align}</math> |
Version vom 11:50, 15. Sep. 2008
The whole expression consists of factors having a base of \displaystyle 5;
so the power rules can be use to simplify the expression first:
\displaystyle \begin{align}
& \frac{5^{12}}{5^{-4}}\centerdot \left( 5^{2} \right)^{-6}=\frac{5^{12}}{5^{-4}}\centerdot 5^{2\centerdot \left( -6 \right)}=\frac{5^{12}}{5^{-4}}\centerdot 5^{-12}=\frac{5^{12}\centerdot 5^{-12}}{5^{-4}} \\
& \\
& =\frac{5^{12-12}}{5^{-4}}=\frac{5^{0}}{5^{-4}}=5^{0-\left( -4 \right)}=5^{4}=5\centerdot 5\centerdot 5\centerdot 5=625 \\
\end{align}