Lösung 1.3:4a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.3:4a moved to Solution 1.3:4a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Because the base is the same in both factors, the exponents can be combined according to the power rules |
- | < | + | |
- | {{ | + | |
+ | <math>2^{9}\centerdot 2^{-7}=2^{9-7}=2^{2}=4</math> | ||
+ | |||
+ | |||
+ | Alternatively, the expressions for the powers can be expanded completely and then cancelled out, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 2^{9-7}=2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot \frac{1}{2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2} \\ | ||
+ | & \\ | ||
+ | & =2\centerdot 2=4 \\ | ||
+ | \end{align}</math> |
Version vom 11:45, 15. Sep. 2008
Because the base is the same in both factors, the exponents can be combined according to the power rules
\displaystyle 2^{9}\centerdot 2^{-7}=2^{9-7}=2^{2}=4
Alternatively, the expressions for the powers can be expanded completely and then cancelled out,
\displaystyle \begin{align}
& 2^{9-7}=2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot \frac{1}{2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2} \\
& \\
& =2\centerdot 2=4 \\
\end{align}