Lösung 1.3:2a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.3:2a moved to Solution 1.3:2a: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | We can write every factor in the expression as a power of |
| - | + | <math>2</math>, | |
| - | {{ | + | |
| + | |||
| + | <math>\begin{align} | ||
| + | & 2=2^{1} \\ | ||
| + | & \\ | ||
| + | & 4=2\centerdot 2=2^{2} \\ | ||
| + | & \\ | ||
| + | & 8=2\centerdot 4=2\centerdot 2\centerdot 2=2^{3} \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | which gives | ||
| + | |||
| + | |||
| + | <math>2\centerdot 4\centerdot 8=2^{1}\centerdot 2^{2}\centerdot 2^{3}=2^{1+2+3}=2^{6}</math> | ||
Version vom 11:12, 15. Sep. 2008
We can write every factor in the expression as a power of \displaystyle 2,
\displaystyle \begin{align}
& 2=2^{1} \\
& \\
& 4=2\centerdot 2=2^{2} \\
& \\
& 8=2\centerdot 4=2\centerdot 2\centerdot 2=2^{3} \\
\end{align}
which gives
\displaystyle 2\centerdot 4\centerdot 8=2^{1}\centerdot 2^{2}\centerdot 2^{3}=2^{1+2+3}=2^{6}
