Lösung 1.3:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.3:1d moved to Solution 1.3:1d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | By using the power rules, we can rewrite the expression, |
- | < | + | |
- | {{ | + | |
+ | <math>\left( \frac{2}{3} \right)^{-3}=\frac{2^{-3}}{3^{-3}}=\frac{\frac{1}{2^{3}}}{\frac{1}{3^{3}}}=\frac{\frac{1}{2^{3}}\centerdot 3^{3}}{\frac{1}{3^{3}}\centerdot 3^{3}}=\frac{\frac{3^{3}}{2^{3}}}{1}=\frac{3^{3}}{2^{3}}</math> | ||
+ | |||
+ | and then carry out the calculation: | ||
+ | |||
+ | |||
+ | <math>\frac{3^{3}}{2^{3}}=\frac{3\centerdot 3\centerdot 3}{2\centerdot 2\centerdot 2}=\frac{27}{8}</math> |
Version vom 11:10, 15. Sep. 2008
By using the power rules, we can rewrite the expression,
\displaystyle \left( \frac{2}{3} \right)^{-3}=\frac{2^{-3}}{3^{-3}}=\frac{\frac{1}{2^{3}}}{\frac{1}{3^{3}}}=\frac{\frac{1}{2^{3}}\centerdot 3^{3}}{\frac{1}{3^{3}}\centerdot 3^{3}}=\frac{\frac{3^{3}}{2^{3}}}{1}=\frac{3^{3}}{2^{3}}
and then carry out the calculation:
\displaystyle \frac{3^{3}}{2^{3}}=\frac{3\centerdot 3\centerdot 3}{2\centerdot 2\centerdot 2}=\frac{27}{8}