Lösung 1.1:2d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.1:2d moved to Solution 1.1:2d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
+ | |||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | + | If we try and analyse the way the expression is constructed we see it is essentially a difference of two sub-expressions, | |
<center><math>\bbox[#FFEEAA;,1.5pt]{\,3\cdot(-7)\,}-\bbox[#FFEEAA;,1.5pt]{\,(4+6)/(-5)\,}</math></center> | <center><math>\bbox[#FFEEAA;,1.5pt]{\,3\cdot(-7)\,}-\bbox[#FFEEAA;,1.5pt]{\,(4+6)/(-5)\,}</math></center> | ||
- | + | which can be calculated independently and then subtracted. | |
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | Examining the sub-expressions,the first is a product and the second a division | |
<center><math>\bbox[#FFEEAA;,1.5pt]{\,3\vphantom{)}\,}\cdot\bbox[#FFEEAA;,1.5pt]{\,(-7)\,} - \bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}/\bbox[#FFEEAA;,1.5pt]{\,(-5)\,}</math>.</center> | <center><math>\bbox[#FFEEAA;,1.5pt]{\,3\vphantom{)}\,}\cdot\bbox[#FFEEAA;,1.5pt]{\,(-7)\,} - \bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}/\bbox[#FFEEAA;,1.5pt]{\,(-5)\,}</math>.</center> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | We thus can begin by calculating the numerator <math>(4+6)</math> in the second sub-expression | |
- | ::<math>3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5) = 3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{\,10\,}/(-5)</math> | + | ::<math>3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5) = 3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{\,10\,}/(-5)</math> |
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | and then move over to the first sub-expression and do the multiplication | |
::<math>\phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = \firstcbox{#FFEEAA;}{\,3\cdot(-7)\,}{-21}-10/(-5)</math> | ::<math>\phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = \firstcbox{#FFEEAA;}{\,3\cdot(-7)\,}{-21}-10/(-5)</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
::<math>\phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = \secondcbox{#FFEEAA;}{\,3\cdot(-7)\,}{-21}-10/(-5)</math> | ::<math>\phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = \secondcbox{#FFEEAA;}{\,3\cdot(-7)\,}{-21}-10/(-5)</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | and return to the division in the second sub-expression | |
::<math>\phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -21-\firstcbox{#FFEEAA;}{\,10/(-5)\,}{(-2)}</math> | ::<math>\phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -21-\firstcbox{#FFEEAA;}{\,10/(-5)\,}{(-2)}</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
::<math>\phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -21-\secondcbox{#FFEEAA;}{\,10/(-5)\,}{(-2)}</math>. | ::<math>\phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -21-\secondcbox{#FFEEAA;}{\,10/(-5)\,}{(-2)}</math>. | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | Finally we have an expression that can be calculated directly | |
::<math>\phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -21-(-2)</math> | ::<math>\phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -21-(-2)</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} |
Version vom 13:40, 13. Sep. 2008
If we try and analyse the way the expression is constructed we see it is essentially a difference of two sub-expressions,
which can be calculated independently and then subtracted.
Examining the sub-expressions,the first is a product and the second a division
We thus can begin by calculating the numerator \displaystyle (4+6) in the second sub-expression
- \displaystyle 3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5) = 3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{\,10\,}/(-5)
and then move over to the first sub-expression and do the multiplication
- \displaystyle \phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = \firstcbox{#FFEEAA;}{\,3\cdot(-7)\,}{-21}-10/(-5)
- \displaystyle \phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = \secondcbox{#FFEEAA;}{\,3\cdot(-7)\,}{-21}-10/(-5)
and return to the division in the second sub-expression
- \displaystyle \phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -21-\firstcbox{#FFEEAA;}{\,10/(-5)\,}{(-2)}
- \displaystyle \phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -21-\secondcbox{#FFEEAA;}{\,10/(-5)\,}{(-2)}.
Finally we have an expression that can be calculated directly
- \displaystyle \phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -21-(-2)
- \displaystyle \phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -21+2
- \displaystyle \phantom{3\cdot(-7)-\bbox[#FFEEAA;,1.5pt]{(4+6)}/(-5)}{} = -19.