2.1 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
Zeile 75: | Zeile 75: | ||
===Övning 2.1:4=== | ===Övning 2.1:4=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | Bestäm koefficienterna framför <math>\,x\,</math> och <math>,x^2\ | + | Bestäm koefficienterna framför <math>\,x\,</math> och <math>,x^2\</math> när följande uttryck utvecklas |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) |
Version vom 08:12, 31. Mär. 2008
Övning 2.1:1
Utveckla
a) | \displaystyle 3x(x-1) | b) | \displaystyle (1+x-x^2)xy | c) | \displaystyle -x^2(4-y^2) |
d) | \displaystyle x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right) | e) | \displaystyle (x-7)^2 | f) | \displaystyle (5+4y)^2 |
g) | \displaystyle (y^2-3x^3)^2 | h) | \displaystyle (5x^3+3x^5)^2 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Lösning g
Lösning h
Övning 2.1:2
Utveckla
a) | \displaystyle (x-4)(x-5)-3x(2x-3) | b) | \displaystyle (1-5x)(1+15x)-3(2-5x)(2+5x) |
c) | \displaystyle (3x+4)^2-(3x-2)(3x-8) | d) | \displaystyle (3x^2+2)(3x^2-2)(9x^4+4) |
e) | \displaystyle (a+b)^2+(a-b)^2 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Övning 2.1:3
Faktorisera så långt som möjligt
a) | \displaystyle x^2-36 | b) | \displaystyle 5x^2-20 | c) | \displaystyle x^2+6x+9 |
d) | \displaystyle x^2-10x+25 | e) | \displaystyle 18x-2x^3 | f) | \displaystyle 16x^2+8x+1 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Övning 2.1:4
Bestäm koefficienterna framför \displaystyle \,x\, och \displaystyle ,x^2\ när följande uttryck utvecklas
a) | \displaystyle (x+2)(3x^2-x+5) |
b) | \displaystyle (1+x+x^2+x^3)(2-x+x^2+x^4) |
c) | \displaystyle (x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4) |