Lösung 3.4:1c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.4:1c moved to Solution 3.4:1c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The equation has the same form as the equation in exercise c and we can therefore use the same strategy. |
- | < | + | |
- | {{ | + | First, we take logs of both sides, |
+ | |||
+ | |||
+ | <math>\ln \left( 3e^{x} \right)=\ln \left( 7\centerdot 2^{x} \right)</math> | ||
+ | |||
+ | |||
+ | and use the log laws to make | ||
+ | <math>x</math> | ||
+ | more accessible: | ||
+ | |||
+ | |||
+ | <math>\ln 3+x\centerdot \ln e=\ln 7+x\centerdot \ln 2</math> | ||
+ | |||
+ | |||
+ | Then, collect together the <math>x</math> terms on the left-hand side: | ||
+ | |||
+ | |||
+ | <math>x\left( \ln e-\ln 2 \right)=\ln 7-\ln 3</math> | ||
+ | |||
+ | |||
+ | The solution is now | ||
+ | |||
+ | |||
+ | <math>x=\frac{\ln 7-\ln 3}{\ln e-\ln 2}=\frac{\ln 7-\ln 3}{1-\ln 2}</math> |
Version vom 13:22, 12. Sep. 2008
The equation has the same form as the equation in exercise c and we can therefore use the same strategy.
First, we take logs of both sides,
\displaystyle \ln \left( 3e^{x} \right)=\ln \left( 7\centerdot 2^{x} \right)
and use the log laws to make
\displaystyle x
more accessible:
\displaystyle \ln 3+x\centerdot \ln e=\ln 7+x\centerdot \ln 2
Then, collect together the \displaystyle x terms on the left-hand side:
\displaystyle x\left( \ln e-\ln 2 \right)=\ln 7-\ln 3
The solution is now
\displaystyle x=\frac{\ln 7-\ln 3}{\ln e-\ln 2}=\frac{\ln 7-\ln 3}{1-\ln 2}