Lösung 4.3:1a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.3:1a moved to Solution 4.3:1a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we draw the angle |
- | < | + | <math>{\pi }/{5}\;</math> |
+ | on a unit circle, then it will have an | ||
+ | <math>x</math> | ||
+ | -coordinate that is equal to | ||
+ | <math>{\cos \pi }/{5}\;</math> | ||
+ | . | ||
- | < | + | FIGURE 1 FIGURE 2 |
- | {{ | + | the line |
+ | <math>x={\cos \pi }/{5}\;</math | ||
+ | the line | ||
+ | <math>x={\cos \pi }/{5}\;</math> | ||
+ | |||
+ | |||
+ | In the figures, we see also that the only other angle between | ||
+ | <math>0</math> | ||
+ | and | ||
+ | <math>2\pi </math> | ||
+ | which has the same cosine value, i.e. same | ||
+ | <math>x</math> | ||
+ | -coordinate, is the angle | ||
+ | <math>v=-\frac{\pi }{5}+2\pi =\frac{9\pi }{5}</math> | ||
+ | on the opposite side of the | ||
+ | <math>x</math> | ||
+ | -axis. |
Version vom 11:44, 12. Sep. 2008
If we draw the angle \displaystyle {\pi }/{5}\; on a unit circle, then it will have an \displaystyle x -coordinate that is equal to \displaystyle {\cos \pi }/{5}\; .
FIGURE 1 FIGURE 2 the line \displaystyle x={\cos \pi }/{5}\;x={\cos \pi }/{5}\;
In the figures, we see also that the only other angle between
\displaystyle 0
and
\displaystyle 2\pi
which has the same cosine value, i.e. same
\displaystyle x
-coordinate, is the angle
\displaystyle v=-\frac{\pi }{5}+2\pi =\frac{9\pi }{5}
on the opposite side of the
\displaystyle x
-axis.