Lösung 2.3:1b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:1b moved to Solution 2.3:1b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
When we complete the square, it is only the first two terms,
-
<center> [[Image:2_3_1b.gif]] </center>
+
<math>x^{2}+2x</math>
-
{{NAVCONTENT_STOP}}
+
, that are involved. The general
 +
formula for completing the square states that
 +
<math>x^{2}+ax</math>
 +
equals
 +
 
 +
 
 +
<math>\left( x+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math>
 +
 
 +
 
 +
Note how the coefficient
 +
<math>a</math>
 +
in front of the
 +
<math>x</math>
 +
turns up halved in two places.
 +
 
 +
If we use this formula, we obtain
 +
 
 +
 
 +
<math>x^{2}+2x=\left( x+\frac{2}{2} \right)^{2}-\left( \frac{2}{2} \right)^{2}=\left( x+1 \right)^{2}-1</math>
 +
 
 +
 
 +
and if we subtract the last "
 +
<math>1</math>
 +
" , we obtain
 +
 
 +
 
 +
<math>x^{2}+2x-1=\left( x+1 \right)^{2}-1-1=\left( x+1 \right)^{2}-2</math>
 +
 
 +
 
 +
To be completely certain that we have used the correct formula, we can expand the quadratic on the right-hand side,
 +
 
 +
 
 +
<math>\left( x+1 \right)^{2}-2=x^{2}+2x+1-2=x^{2}+2x-1</math>
 +
 
 +
 
 +
and see that the relation really holds.

Version vom 10:11, 12. Sep. 2008

When we complete the square, it is only the first two terms, \displaystyle x^{2}+2x , that are involved. The general formula for completing the square states that \displaystyle x^{2}+ax equals


\displaystyle \left( x+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}


Note how the coefficient \displaystyle a in front of the \displaystyle x turns up halved in two places.

If we use this formula, we obtain


\displaystyle x^{2}+2x=\left( x+\frac{2}{2} \right)^{2}-\left( \frac{2}{2} \right)^{2}=\left( x+1 \right)^{2}-1


and if we subtract the last " \displaystyle 1 " , we obtain


\displaystyle x^{2}+2x-1=\left( x+1 \right)^{2}-1-1=\left( x+1 \right)^{2}-2


To be completely certain that we have used the correct formula, we can expand the quadratic on the right-hand side,


\displaystyle \left( x+1 \right)^{2}-2=x^{2}+2x+1-2=x^{2}+2x-1


and see that the relation really holds.