Lösung 1.2:4b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:4b moved to Solution 1.2:4b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Multiply top and bottom of the double fraction by the reciprocal of the denominator.
-
<center> [[Image:1_2_4b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\frac{\frac{2}{7}}{\frac{3}{8}}=\frac{\frac{2}{7}\centerdot \frac{8}{3}}{\frac{3}{8}\centerdot \frac{8}{3}}=\frac{2}{7}\centerdot \frac{8}{3}</math>
 +
 
 +
The numerator and denominator on the right-hand side do not have a common factor, so the answer is:
 +
 
 +
 
 +
<math>\frac{2}{7}\centerdot \frac{8}{3}=\frac{2\centerdot 8}{7\centerdot 3}=\frac{16}{21}</math>
 +
 
 +
 
 +
NOTE: It is also possible to learn a quick formula for double fractions which says that when the expression is rewritten with just one fraction sign, the denominators in the partial fractions change place:
 +
 
 +
 
 +
<math>\frac{\frac{2}{7}}{\frac{3}{8}}=\frac{2\centerdot 8}{3\centerdot 7}</math>

Version vom 13:23, 11. Sep. 2008

Multiply top and bottom of the double fraction by the reciprocal of the denominator.


\displaystyle \frac{\frac{2}{7}}{\frac{3}{8}}=\frac{\frac{2}{7}\centerdot \frac{8}{3}}{\frac{3}{8}\centerdot \frac{8}{3}}=\frac{2}{7}\centerdot \frac{8}{3}

The numerator and denominator on the right-hand side do not have a common factor, so the answer is:


\displaystyle \frac{2}{7}\centerdot \frac{8}{3}=\frac{2\centerdot 8}{7\centerdot 3}=\frac{16}{21}


NOTE: It is also possible to learn a quick formula for double fractions which says that when the expression is rewritten with just one fraction sign, the denominators in the partial fractions change place:


\displaystyle \frac{\frac{2}{7}}{\frac{3}{8}}=\frac{2\centerdot 8}{3\centerdot 7}