Lösung 1.2:4b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.2:4b moved to Solution 1.2:4b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Multiply top and bottom of the double fraction by the reciprocal of the denominator. |
- | < | + | |
- | {{ | + | |
+ | <math>\frac{\frac{2}{7}}{\frac{3}{8}}=\frac{\frac{2}{7}\centerdot \frac{8}{3}}{\frac{3}{8}\centerdot \frac{8}{3}}=\frac{2}{7}\centerdot \frac{8}{3}</math> | ||
+ | |||
+ | The numerator and denominator on the right-hand side do not have a common factor, so the answer is: | ||
+ | |||
+ | |||
+ | <math>\frac{2}{7}\centerdot \frac{8}{3}=\frac{2\centerdot 8}{7\centerdot 3}=\frac{16}{21}</math> | ||
+ | |||
+ | |||
+ | NOTE: It is also possible to learn a quick formula for double fractions which says that when the expression is rewritten with just one fraction sign, the denominators in the partial fractions change place: | ||
+ | |||
+ | |||
+ | <math>\frac{\frac{2}{7}}{\frac{3}{8}}=\frac{2\centerdot 8}{3\centerdot 7}</math> |
Version vom 13:23, 11. Sep. 2008
Multiply top and bottom of the double fraction by the reciprocal of the denominator.
\displaystyle \frac{\frac{2}{7}}{\frac{3}{8}}=\frac{\frac{2}{7}\centerdot \frac{8}{3}}{\frac{3}{8}\centerdot \frac{8}{3}}=\frac{2}{7}\centerdot \frac{8}{3}
The numerator and denominator on the right-hand side do not have a common factor, so the answer is:
\displaystyle \frac{2}{7}\centerdot \frac{8}{3}=\frac{2\centerdot 8}{7\centerdot 3}=\frac{16}{21}
NOTE: It is also possible to learn a quick formula for double fractions which says that when the expression is rewritten with just one fraction sign, the denominators in the partial fractions change place:
\displaystyle \frac{\frac{2}{7}}{\frac{3}{8}}=\frac{2\centerdot 8}{3\centerdot 7}