Lösung 1.2:3a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.2:3a moved to Solution 1.2:3a: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | The denominator in the expression has |
| - | < | + | <math>10</math> |
| - | {{ | + | as a common factor, |
| + | |||
| + | |||
| + | <math>\frac{3}{2\centerdot 10}+\frac{7}{5\centerdot 10}-\frac{1}{10}</math> | ||
| + | |||
| + | |||
| + | and it is therefore sufficient to multiply the top and bottom of each fraction by the other factors in the denominators in order to obtain a common denominator, | ||
| + | |||
| + | |||
| + | <math>\frac{3\centerdot 5}{20\centerdot 5}+\frac{7\centerdot 2}{50\centerdot 2}-\frac{1\centerdot 5\centerdot 2}{10\centerdot 5\centerdot 2}=\frac{15}{100}+\frac{14}{100}-\frac{10}{100}</math> | ||
| + | |||
| + | |||
| + | The lowest common denominator (LCD) is therefore | ||
| + | <math>100</math> | ||
| + | , and the expression is equal to | ||
| + | |||
| + | |||
| + | <math>\frac{15}{100}+\frac{14}{100}-\frac{10}{100}=\frac{15+14-10}{100}=\frac{19}{100}</math> | ||
Version vom 12:58, 11. Sep. 2008
The denominator in the expression has \displaystyle 10 as a common factor,
\displaystyle \frac{3}{2\centerdot 10}+\frac{7}{5\centerdot 10}-\frac{1}{10}
and it is therefore sufficient to multiply the top and bottom of each fraction by the other factors in the denominators in order to obtain a common denominator,
\displaystyle \frac{3\centerdot 5}{20\centerdot 5}+\frac{7\centerdot 2}{50\centerdot 2}-\frac{1\centerdot 5\centerdot 2}{10\centerdot 5\centerdot 2}=\frac{15}{100}+\frac{14}{100}-\frac{10}{100}
The lowest common denominator (LCD) is therefore
\displaystyle 100
, and the expression is equal to
\displaystyle \frac{15}{100}+\frac{14}{100}-\frac{10}{100}=\frac{15+14-10}{100}=\frac{19}{100}
