Lösung 1.2:2d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:2d moved to Solution 1.2:2d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we divide up the denominators into their smallest possible integer factors,
-
<center> [[Image:1_2_2d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& 45=5\centerdot 9=5\centerdot 3\centerdot 3 \\
 +
& 75=3\centerdot 25=3\centerdot 5\centerdot 5 \\
 +
\end{align}</math>
 +
 
 +
 
 +
the expression can be written as
 +
 
 +
 
 +
<math>\frac{1}{5\centerdot 3\centerdot 3}+\frac{1}{3\centerdot 5\centerdot 5}</math>
 +
 
 +
and then we see that the denominators have
 +
<math>3\centerdot 5</math>
 +
as a common factor. Therefore, if we multiply the top and bottom of the first fraction by
 +
<math>5</math>
 +
and the second by
 +
<math>3</math>
 +
, the result is the lowest possible denominator.
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{2}{5\centerdot 3\centerdot 3}\centerdot \frac{5}{5}+\frac{1}{3\centerdot 5\centerdot 5}\centerdot \frac{3}{3} \\
 +
& =\frac{2}{5\centerdot 3\centerdot 3\centerdot 5}+\frac{3}{3\centerdot 5\centerdot 5\centerdot 3} \\
 +
& =\frac{10}{225}+\frac{3}{225} \\
 +
\end{align}</math>
 +
 
 +
 
 +
The lowest common denominator is
 +
<math>225</math>
 +
.

Version vom 12:45, 11. Sep. 2008

If we divide up the denominators into their smallest possible integer factors,


\displaystyle \begin{align} & 45=5\centerdot 9=5\centerdot 3\centerdot 3 \\ & 75=3\centerdot 25=3\centerdot 5\centerdot 5 \\ \end{align}


the expression can be written as


\displaystyle \frac{1}{5\centerdot 3\centerdot 3}+\frac{1}{3\centerdot 5\centerdot 5}

and then we see that the denominators have \displaystyle 3\centerdot 5 as a common factor. Therefore, if we multiply the top and bottom of the first fraction by \displaystyle 5 and the second by \displaystyle 3 , the result is the lowest possible denominator.


\displaystyle \begin{align} & \frac{2}{5\centerdot 3\centerdot 3}\centerdot \frac{5}{5}+\frac{1}{3\centerdot 5\centerdot 5}\centerdot \frac{3}{3} \\ & =\frac{2}{5\centerdot 3\centerdot 3\centerdot 5}+\frac{3}{3\centerdot 5\centerdot 5\centerdot 3} \\ & =\frac{10}{225}+\frac{3}{225} \\ \end{align}


The lowest common denominator is \displaystyle 225 .