Lösung 1.2:2d
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.2:2d moved to Solution 1.2:2d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we divide up the denominators into their smallest possible integer factors, |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & 45=5\centerdot 9=5\centerdot 3\centerdot 3 \\ | ||
+ | & 75=3\centerdot 25=3\centerdot 5\centerdot 5 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | the expression can be written as | ||
+ | |||
+ | |||
+ | <math>\frac{1}{5\centerdot 3\centerdot 3}+\frac{1}{3\centerdot 5\centerdot 5}</math> | ||
+ | |||
+ | and then we see that the denominators have | ||
+ | <math>3\centerdot 5</math> | ||
+ | as a common factor. Therefore, if we multiply the top and bottom of the first fraction by | ||
+ | <math>5</math> | ||
+ | and the second by | ||
+ | <math>3</math> | ||
+ | , the result is the lowest possible denominator. | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{2}{5\centerdot 3\centerdot 3}\centerdot \frac{5}{5}+\frac{1}{3\centerdot 5\centerdot 5}\centerdot \frac{3}{3} \\ | ||
+ | & =\frac{2}{5\centerdot 3\centerdot 3\centerdot 5}+\frac{3}{3\centerdot 5\centerdot 5\centerdot 3} \\ | ||
+ | & =\frac{10}{225}+\frac{3}{225} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The lowest common denominator is | ||
+ | <math>225</math> | ||
+ | . |
Version vom 12:45, 11. Sep. 2008
If we divide up the denominators into their smallest possible integer factors,
\displaystyle \begin{align}
& 45=5\centerdot 9=5\centerdot 3\centerdot 3 \\
& 75=3\centerdot 25=3\centerdot 5\centerdot 5 \\
\end{align}
the expression can be written as
\displaystyle \frac{1}{5\centerdot 3\centerdot 3}+\frac{1}{3\centerdot 5\centerdot 5}
and then we see that the denominators have \displaystyle 3\centerdot 5 as a common factor. Therefore, if we multiply the top and bottom of the first fraction by \displaystyle 5 and the second by \displaystyle 3 , the result is the lowest possible denominator.
\displaystyle \begin{align}
& \frac{2}{5\centerdot 3\centerdot 3}\centerdot \frac{5}{5}+\frac{1}{3\centerdot 5\centerdot 5}\centerdot \frac{3}{3} \\
& =\frac{2}{5\centerdot 3\centerdot 3\centerdot 5}+\frac{3}{3\centerdot 5\centerdot 5\centerdot 3} \\
& =\frac{10}{225}+\frac{3}{225} \\
\end{align}
The lowest common denominator is
\displaystyle 225
.