3.4 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-3.4 Logaritmekvationer +3.4 Logarithmic equations)) |
K (Robot: Automated text replacement (-{{Ej vald flik +{{Not selected tab)) |
||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[3.4 Logarithmic equations|Theory]]}} |
{{Vald flik|[[3.4 Exercises|Exercises]]}} | {{Vald flik|[[3.4 Exercises|Exercises]]}} | ||
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| |
Version vom 13:46, 10. Sep. 2008
Exercise 3.4:1
Solve the equation
a) | \displaystyle e^x=13 | b) | \displaystyle 13e^x=2\cdot3^{-x} | c) | \displaystyle 3e^x=7\cdot2^x |
Answer
Solution a
Solution b
Solution c
Exercise 3.4:2
Solve the equation
a) | \displaystyle 2^{\scriptstyle x^2-2}=1 | b) | \displaystyle e^{2x}+e^x=4 | c) | \displaystyle 3e^{x^2}=2^x |
Answer
Solution a
Solution b
Solution c
Exercise 3.4:3
Solve the equation
a) | \displaystyle 2^{-x^2}=2e^{2x} | b) | \displaystyle \ln{(x^2+3x)}=\ln{(3x^2-2x)} |
c) | \displaystyle \ln{x}+\ln{(x+4)}=\ln{(2x+3)} |
Answer
Solution a
Solution b
Solution c