4.1 Übungen
Aus Online Mathematik Brückenkurs 1
K (Robot: Automated text replacement (-Svar +Answer)) |
K (Robot: Automated text replacement (-Lösning +Solution)) |
||
Zeile 21: | Zeile 21: | ||
|width="50%" | <math>\displaystyle \frac{97}{12} \textrm{ revolution} </math> | |width="50%" | <math>\displaystyle \frac{97}{12} \textrm{ revolution} </math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.1:1|Solution | | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:1|Solution |Solution 4.1:1}} |
===Exrecise 4.1:2=== | ===Exrecise 4.1:2=== | ||
Zeile 36: | Zeile 36: | ||
|width="25%" | <math>270^\circ</math> | |width="25%" | <math>270^\circ</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.1:2|Solution | | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:2|Solution |Solution 4.1:2}} |
===Exercise 4.1:3=== | ===Exercise 4.1:3=== | ||
Zeile 50: | Zeile 50: | ||
|width="33%" | {{:4.1 - Figur - Rätvinklig triangel med sidor 8, x och 17}} | |width="33%" | {{:4.1 - Figur - Rätvinklig triangel med sidor 8, x och 17}} | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.1:3|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:3|Solution a|Solution 4.1:3a|Solution b|Solution 4.1:3b|Solution c|Solution 4.1:3c}} |
===Exercise 4.1:4=== | ===Exercise 4.1:4=== | ||
Zeile 64: | Zeile 64: | ||
|width="100%" | Find the point on the x-axis which lies as far from the point (3,3) as from (5,1). | |width="100%" | Find the point on the x-axis which lies as far from the point (3,3) as from (5,1). | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.1:4|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:4|Solution a|Solution 4.1:4a|Solution b|Solution 4.1:4b|Solution c|Solution 4.1:4c}} |
===Exercise 4.1:5=== | ===Exercise 4.1:5=== | ||
Zeile 75: | Zeile 75: | ||
|width="100%" | Determine the equation of a circle having its centre at (2,-1) and which contains the point (-1,1). | |width="100%" | Determine the equation of a circle having its centre at (2,-1) and which contains the point (-1,1). | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.1:5|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:5|Solution a|Solution 4.1:5a|Solution b|Solution 4.1:5b}} |
===Exercise 4.1:6=== | ===Exercise 4.1:6=== | ||
Zeile 89: | Zeile 89: | ||
|width="50%" | <math>(3x-1)^2+(3y+7)^2=10</math> | |width="50%" | <math>(3x-1)^2+(3y+7)^2=10</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.1:6|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:6|Solution a|Solution 4.1:6a|Solution b|Solution 4.1:6b|Solution c|Solution 4.1:6c}} |
===Exercise 4.1:7=== | ===Exercise 4.1:7=== | ||
Zeile 105: | Zeile 105: | ||
|width="50%" | <math>x^2-2x+y^2+2y=-2</math> | |width="50%" | <math>x^2-2x+y^2+2y=-2</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.1:7|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:7|Solution a|Solution 4.1:7a|Solution b|Solution 4.1:7b|Solution c|Solution 4.1:7c|Solution d|Solution 4.1:7d}} |
===Exercise 4.1:8=== | ===Exercise 4.1:8=== | ||
<div class="ovning"> | <div class="ovning"> | ||
How many revolutions does a wheel of radius 50 cm make when it rolls 10m? | How many revolutions does a wheel of radius 50 cm make when it rolls 10m? | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.1:8|Solution| | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:8|Solution|Solution 4.1:8}} |
===Exercise 4.1:9=== | ===Exercise 4.1:9=== | ||
<div class="ovning"> | <div class="ovning"> | ||
On a clock, the second hand is 8 cm long. How large an area does it sweep through in 10 seconds? | On a clock, the second hand is 8 cm long. How large an area does it sweep through in 10 seconds? | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.1:9|Solution| | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:9|Solution|Solution 4.1:9}} |
Zeile 126: | Zeile 126: | ||
<center> {{:4.1 - Figur - Tvättlina med kavaj på galge}} </center> | <center> {{:4.1 - Figur - Tvättlina med kavaj på galge}} </center> | ||
- | </div>{{#NAVCONTENT:Answer|Answer 4.1:10|Solution| | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:10|Solution|Solution 4.1:10}} |
Version vom 11:21, 9. Sep. 2008
Exercise 4.1:1
Write in degrees and radians
a) | \displaystyle \displaystyle \frac{1}{4} \textrm{ revolution} | b) | \displaystyle \displaystyle \frac{3}{8} \textrm{ revolution} |
c) | \displaystyle -\displaystyle \frac{2}{3}\textrm{ revolution} | d) | \displaystyle \displaystyle \frac{97}{12} \textrm{ revolution} |
Exrecise 4.1:2
Transform to radians
a) | \displaystyle 45^\circ | b) | \displaystyle 135^\circ | c) | \displaystyle -63^\circ | d) | \displaystyle 270^\circ |
Exercise 4.1:3
Determine the length of the side marked \displaystyle \,x\,\mbox{.}
a) | b) | 4.1 - Figur - Rätvinklig triangel med sidor 12, x och 13 | c) | 4.1 - Figur - Rätvinklig triangel med sidor 8, x och 17 |
Exercise 4.1:4
a) | Determine the distance between the points (1,1) and (5,4). |
b) | Determine the distance between the points(-2,5) and (3,-1). |
c) | Find the point on the x-axis which lies as far from the point (3,3) as from (5,1). |
Exercise 4.1:5
a) | Determine the equation of a circle having its centre at (1,2) and radius 2. |
b) | Determine the equation of a circle having its centre at (2,-1) and which contains the point (-1,1). |
Exercise 4.1:6
Sketch the following circles
a) | \displaystyle x^2+y^2=9 | b) | \displaystyle (x-1)^2+(y-2)^2=3 |
c) | \displaystyle (3x-1)^2+(3y+7)^2=10 |
Exercise 4.1:7
Sketch the following circles
a) | \displaystyle x^2+2x+y^2-2y=1 | b) | \displaystyle x^2+y^2+4y=0 |
c) | \displaystyle x^2-2x+y^2+6y=-3 | d) | \displaystyle x^2-2x+y^2+2y=-2 |
Exercise 4.1:8
How many revolutions does a wheel of radius 50 cm make when it rolls 10m?
Exercise 4.1:9
On a clock, the second hand is 8 cm long. How large an area does it sweep through in 10 seconds?
Exercise 4.1:10
A washing line of length 5.4 m hangs between two vertical trees that are at a distance of 4.8 m from each other. One end of the line is fixed 0.6 m higher than the other, and a jacket hangs from a hanger 1.2 m from the tree where the line has its lower point of attachment. Determine how far below the lower attachement point the hanger is hanging. (That is, the distance \displaystyle \,x\, in the figure).