Processing Math: 94%
4.4 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Translated links into English) |
K (Robot: Automated text replacement (-Svar +Answer)) |
||
Zeile 29: | Zeile 29: | ||
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math> | |width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:1|Solution a |Lösning 4.4:1a|Solution b |Lösning 4.4:1b|Solution c |Lösning 4.4:1c|Solution d |Lösning 4.4:1d|Solution e |Lösning 4.4:1e|Solution f |Lösning 4.4:1f|Solution g |Lösning 4.4:1g}} |
===Exercise 4.4:2=== | ===Exercise 4.4:2=== | ||
Zeile 49: | Zeile 49: | ||
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math> | |width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:2|Solution a |Lösning 4.4:2a|Solution b |Lösning 4.4:2b|Solution c |Lösning 4.4:2c|Solution d |Lösning 4.4:2d|Solution e |Lösning 4.4:2e|Solution f |Lösning 4.4:2f}} |
===Exercise 4.4:3=== | ===Exercise 4.4:3=== | ||
Zeile 65: | Zeile 65: | ||
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math> | |width="50%" | <math>\sin{3x}=\sin{15^\circ}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:3|Solution a |Lösning 4.4:3a|Solution b |Lösning 4.4:3b|Solution c |Lösning 4.4:3c|Solution d |Lösning 4.4:3d}} |
===Exercise 4.4:4=== | ===Exercise 4.4:4=== | ||
<div class="ovning"> | <div class="ovning"> | ||
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>. | Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>. | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:4|Solution |Lösning 4.4:4}} |
Zeile 85: | Zeile 85: | ||
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math> | |width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:5|Solution a |Lösning 4.4:5a|Solution b |Lösning 4.4:5b|Solution c |Lösning 4.4:5c}} |
===Exercise 4.4:6=== | ===Exercise 4.4:6=== | ||
Zeile 99: | Zeile 99: | ||
|width="50%" | <math>\sin 2x = -\sin x</math> | |width="50%" | <math>\sin 2x = -\sin x</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:6|Solution a |Lösning 4.4:6a|Solution b |Lösning 4.4:6b|Solution c |Lösning 4.4:6c}} |
===Exercise 4.4:7=== | ===Exercise 4.4:7=== | ||
Zeile 113: | Zeile 113: | ||
|width="50%" | <math>\cos{3x}=\sin{4x}</math> | |width="50%" | <math>\cos{3x}=\sin{4x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:7|Solution a |Lösning 4.4:7a|Solution b |Lösning 4.4:7b|Solution c |Lösning 4.4:7c}} |
===Exercise 4.4:8=== | ===Exercise 4.4:8=== | ||
Zeile 127: | Zeile 127: | ||
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math> | |width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:8|Solution a |Lösning 4.4:8a|Solution b |Lösning 4.4:8b|Solution c |Lösning 4.4:8c}} |
Version vom 07:11, 9. Sep. 2008
Exercise 4.4:1
For which angles v
2
a) | | b) | |
c) | | d) | |
e) | | f) | |
g) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f | Solution g
Exercise 4.4:2
Solve the equation
a) | ![]() | b) | | c) | |
d) | ![]() | e) | | f) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 4.4:3
Solve the equation
a) | ![]() | b) | ![]() |
c) | ![]() ![]() | d) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 4.4:4
Determine the angles v
360
2v+10
=cos110
Exercise 4.4:5
Solve the equation
a) | | b) | |
c) | ![]() ![]() |
Answer | Solution a | Solution b | Solution c
Exercise 4.4:6
Solve the equation
a) | ![]() | b) | ![]() |
c) | |
Answer | Solution a | Solution b | Solution c
Exercise 4.4:7
Solve the equation
a) | | b) | |
c) | |
Answer | Solution a | Solution b | Solution c
Exercise 4.4:8
Solve the equation
a) | ![]() | b) | \displaystyle \sin{x}=\sqrt{3}\cos{x} |
c) | \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x} |
Answer | Solution a | Solution b | Solution c