Antwort 2.3:4
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {| width="100%" cellspacing="10px" |a) |width="100%" | <math>ax^2-ax-2a=0\,</math>, där <math>\,a\ne 0\,</math> är en konstant. |- |b) |width="100" | <math>ax^2-2ax-2a=0\,</math>, där <...) |
(Translated into English) |
||
| Zeile 1: | Zeile 1: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
| - | |width="100%" | <math>ax^2-ax-2a=0\,</math>, | + | |width="100%" | <math>ax^2-ax-2a=0\,</math>, where <math>\,a\ne 0\,</math> is a constant. |
|- | |- | ||
|b) | |b) | ||
| - | |width="100" | <math>ax^2-2ax-2a=0\,</math>, | + | |width="100" | <math>ax^2-2ax-2a=0\,</math>, where <math>\,a\ne 0\,</math> is a constant. |
|- | |- | ||
|c) | |c) | ||
| - | |width="100" | <math>ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,</math>, | + | |width="100" | <math>ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,</math>, where <math>\,a\ne 0\,</math> is a constant. |
|} | |} | ||
Version vom 10:30, 8. Sep. 2008
| a) | \displaystyle ax^2-ax-2a=0\,, where \displaystyle \,a\ne 0\, is a constant. |
| b) | \displaystyle ax^2-2ax-2a=0\,, where \displaystyle \,a\ne 0\, is a constant. |
| c) | \displaystyle ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,, where \displaystyle \,a\ne 0\, is a constant. |
