Lösung 2.1:3f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
|||
Zeile 7: | Zeile 7: | ||
<math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math> | <math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math> | ||
- | <!--<center> [[ | + | <!--<center> [[Image:2_1_3f.gif]] </center>--> |
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 06:35, 21. Aug. 2008
Treating \displaystyle 4x as one term, we can write
\displaystyle \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1
and since \displaystyle y^2 +2y+1=(y+1)^2 we obtain
\displaystyle \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2