4.4 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Translated links into English) |
|||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{Ej vald flik|[[4.4 Trigonometriska ekvationer| | + | {{Ej vald flik|[[4.4 Trigonometriska ekvationer|Theory]]}} |
{{Vald flik|[[4.4 Övningar|Exercises]]}} | {{Vald flik|[[4.4 Övningar|Exercises]]}} | ||
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
Zeile 29: | Zeile 29: | ||
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math> | |width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.4:1|Solution a |Lösning 4.4:1a|Solution b |Lösning 4.4:1b|Solution c |Lösning 4.4:1c|Solution d |Lösning 4.4:1d|Solution e |Lösning 4.4:1e|Solution f |Lösning 4.4:1f|Solution g |Lösning 4.4:1g}} |
===Exercise 4.4:2=== | ===Exercise 4.4:2=== | ||
Zeile 49: | Zeile 49: | ||
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math> | |width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.4:2|Solution a |Lösning 4.4:2a|Solution b |Lösning 4.4:2b|Solution c |Lösning 4.4:2c|Solution d |Lösning 4.4:2d|Solution e |Lösning 4.4:2e|Solution f |Lösning 4.4:2f}} |
===Exercise 4.4:3=== | ===Exercise 4.4:3=== | ||
Zeile 65: | Zeile 65: | ||
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math> | |width="50%" | <math>\sin{3x}=\sin{15^\circ}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.4:3|Solution a |Lösning 4.4:3a|Solution b |Lösning 4.4:3b|Solution c |Lösning 4.4:3c|Solution d |Lösning 4.4:3d}} |
===Exercise 4.4:4=== | ===Exercise 4.4:4=== | ||
<div class="ovning"> | <div class="ovning"> | ||
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>. | Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>. | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.4:4|Solution |Lösning 4.4:4}} |
Zeile 85: | Zeile 85: | ||
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math> | |width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.4:5|Solution a |Lösning 4.4:5a|Solution b |Lösning 4.4:5b|Solution c |Lösning 4.4:5c}} |
===Exercise 4.4:6=== | ===Exercise 4.4:6=== | ||
Zeile 99: | Zeile 99: | ||
|width="50%" | <math>\sin 2x = -\sin x</math> | |width="50%" | <math>\sin 2x = -\sin x</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.4:6|Solution a |Lösning 4.4:6a|Solution b |Lösning 4.4:6b|Solution c |Lösning 4.4:6c}} |
===Exercise 4.4:7=== | ===Exercise 4.4:7=== | ||
Zeile 113: | Zeile 113: | ||
|width="50%" | <math>\cos{3x}=\sin{4x}</math> | |width="50%" | <math>\cos{3x}=\sin{4x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.4:7|Solution a |Lösning 4.4:7a|Solution b |Lösning 4.4:7b|Solution c |Lösning 4.4:7c}} |
===Exercise 4.4:8=== | ===Exercise 4.4:8=== | ||
Zeile 127: | Zeile 127: | ||
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math> | |width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 4.4:8|Solution a |Lösning 4.4:8a|Solution b |Lösning 4.4:8b|Solution c |Lösning 4.4:8c}} |
Version vom 08:09, 20. Aug. 2008
Exercise 4.4:1
For which angles \displaystyle \,v\,, where \displaystyle \,0 \leq v\leq 2\pi\,, does
a) | \displaystyle \sin{v}=\displaystyle \frac{1}{2} | b) | \displaystyle \cos{v}=\displaystyle \frac{1}{2} |
c) | \displaystyle \sin{v}=1 | d) | \displaystyle \tan{v}=1 |
e) | \displaystyle \cos{v}=2 | f) | \displaystyle \sin{v}=-\displaystyle \frac{1}{2} |
g) | \displaystyle \tan{v}=-\displaystyle \frac{1}{\sqrt{3}} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Solution g
Exercise 4.4:2
Solve the equation
a) | \displaystyle \sin{x}=\displaystyle \frac{\sqrt{3}}{2} | b) | \displaystyle \cos{x}=\displaystyle \frac{1}{2} | c) | \displaystyle \sin{x}=0 |
d) | \displaystyle \sin{5x}=\displaystyle \frac{1}{\sqrt{2}} | e) | \displaystyle \sin{5x}=\displaystyle \frac{1}{2} | f) | \displaystyle \cos{3x}=-\displaystyle\frac{1}{\sqrt{2}} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Exercise 4.4:3
Solve the equation
a) | \displaystyle \cos{x}=\cos{\displaystyle \frac{\pi}{6}} | b) | \displaystyle \sin{x}=\sin{\displaystyle \frac{\pi}{5}} |
c) | \displaystyle \sin{(x+40^\circ)}=\sin{65^\circ} | d) | \displaystyle \sin{3x}=\sin{15^\circ} |
Answer
Solution a
Solution b
Solution c
Solution d
Exercise 4.4:4
Determine the angles \displaystyle \,v\, in the interval \displaystyle \,0^\circ \leq v \leq 360^\circ\, which satisfy \displaystyle \ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,.
Answer
Solution
Exercise 4.4:5
Solve the equation
a) | \displaystyle \sin{3x}=\sin{x} | b) | \displaystyle \tan{x}=\tan{4x} |
c) | \displaystyle \cos{5x}=\cos(x+\pi/5) |
Exercise 4.4:6
Solve the equation
a) | \displaystyle \sin x\cdot \cos 3x = 2\sin x | b) | \displaystyle \sqrt{2}\sin{x}\cos{x}=\cos{x} |
c) | \displaystyle \sin 2x = -\sin x |
Exercise 4.4:7
Solve the equation
a) | \displaystyle 2\sin^2{x}+\sin{x}=1 | b) | \displaystyle 2\sin^2{x}-3\cos{x}=0 |
c) | \displaystyle \cos{3x}=\sin{4x} |
Exercise 4.4:8
Solve the equation
a) | \displaystyle \sin{2x}=\sqrt{2}\cos{x} | b) | \displaystyle \sin{x}=\sqrt{3}\cos{x} |
c) | \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x} |