Lösung 2.1:3f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
Zeile 4: | Zeile 4: | ||
<math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math> | <math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math> | ||
- | and | + | and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain |
<math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math> | <math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math> | ||
<!--<center> [[Bild:2_1_3f.gif]] </center>--> | <!--<center> [[Bild:2_1_3f.gif]] </center>--> | ||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 13:24, 13. Aug. 2008
Treating \displaystyle 4x as one term, we can write
\displaystyle \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1
and since \displaystyle y^2 +2y+1=(y+1)^2 we obtain
\displaystyle \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2