Lösung 2.1:3f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_3f.gif </center> {{NAVCONTENT_STOP}}) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | <center> [[Bild:2_1_3f.gif]] </center> | + | Treating <math>4x</math> as one term, we can write |
+ | |||
+ | <math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math> | ||
+ | |||
+ | and because <math> y^2 +2y+1=(y+1)^2 </math> we obtain | ||
+ | |||
+ | <math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math> | ||
+ | <!--<center> [[Bild:2_1_3f.gif]] </center>--> | ||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 13:23, 13. Aug. 2008
Treating \displaystyle 4x as one term, we can write
\displaystyle \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1
and because \displaystyle y^2 +2y+1=(y+1)^2 we obtain
\displaystyle \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2