Lösung 2.1:2e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_2e.gif </center> {{NAVCONTENT_STOP}}) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | <center> [[Bild:2_1_2e.gif]] </center> | + | We expand the two quadratics using the squaring rule, and then sum the result. |
+ | |||
+ | <math> \qquad \begin{align}(a+b)^2+(a-b)^2 &= (a^2+2ab+b^2)+(a^2-2ab+b^2)\\ | ||
+ | &= a^2+2ab+b^2+a^2-2ab+b^2 \\ | ||
+ | &= a^2+a^2+2ab-2ab+b^2+b^2\\ | ||
+ | &= 2a^2 +2b^2 | ||
+ | \end{align} | ||
+ | </math> | ||
+ | <!--<center> [[Bild:2_1_2e.gif]] </center>--> | ||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 13:04, 13. Aug. 2008
We expand the two quadratics using the squaring rule, and then sum the result.
\displaystyle \qquad \begin{align}(a+b)^2+(a-b)^2 &= (a^2+2ab+b^2)+(a^2-2ab+b^2)\\ &= a^2+2ab+b^2+a^2-2ab+b^2 \\ &= a^2+a^2+2ab-2ab+b^2+b^2\\ &= 2a^2 +2b^2 \end{align}