Lösung 2.1:2b
Aus Online Mathematik Brückenkurs 1
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_2b.gif </center> {{NAVCONTENT_STOP}}) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | <center> [[Bild:2_1_2b.gif]] </center> | + | <!--center> [[Bild:2_1_2b.gif]] </center--> |
+ | We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket | ||
+ | |||
+ | <math> | ||
+ | \qquad | ||
+ | \begin{align} | ||
+ | (1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\ | ||
+ | &=1+15x-5x-75x^2 | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x.</math> | ||
+ | |||
+ | <math> | ||
+ | \qquad | ||
+ | \begin{align} | ||
+ | 3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\ | ||
+ | &=3(4-25x^2)\\ | ||
+ | &=12-75x^2 | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | All together, we obtain | ||
+ | |||
+ | <math> \qquad (1-5x)(1+15x)-3(2-5x)(2+5x) </math> | ||
+ | |||
+ | <math> | ||
+ | \qquad | ||
+ | \begin{align} | ||
+ | \phantom{3(2-5x)(2+5x)} &= (1+10x-75x^2)-(12-75x^2)\\ | ||
+ | &= 1+10x-75x^2-12+75x^2\\ | ||
+ | &= 1-12+10x-75x^2+75x^2\\ | ||
+ | &=-11+10x | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 10:58, 13. Aug. 2008
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket
\displaystyle \qquad \begin{align} (1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\ &=1+15x-5x-75x^2 \end{align}
As for the second expression, we can use the conjugate rule \displaystyle (a-b)(a+b)=a^2-b^2, where \displaystyle a=2 and \displaystyle b=5x.
\displaystyle \qquad \begin{align} 3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\ &=3(4-25x^2)\\ &=12-75x^2 \end{align}
All together, we obtain
\displaystyle \qquad (1-5x)(1+15x)-3(2-5x)(2+5x)
\displaystyle \qquad \begin{align} \phantom{3(2-5x)(2+5x)} &= (1+10x-75x^2)-(12-75x^2)\\ &= 1+10x-75x^2-12+75x^2\\ &= 1-12+10x-75x^2+75x^2\\ &=-11+10x \end{align}