Lösung 2.1:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_2b.gif </center> {{NAVCONTENT_STOP}})
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
<center> [[Bild:2_1_2b.gif]] </center>
+
<!--center> [[Bild:2_1_2b.gif]] </center-->
 +
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket
 +
 
 +
<math>
 +
\qquad
 +
\begin{align}
 +
(1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\
 +
&=1+15x-5x-75x^2
 +
\end{align}
 +
</math>
 +
 
 +
As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x.</math>
 +
 
 +
<math>
 +
\qquad
 +
\begin{align}
 +
3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\
 +
&=3(4-25x^2)\\
 +
&=12-75x^2
 +
\end{align}
 +
</math>
 +
 
 +
All together, we obtain
 +
 
 +
<math> \qquad (1-5x)(1+15x)-3(2-5x)(2+5x) </math>
 +
 
 +
<math>
 +
\qquad
 +
\begin{align}
 +
\phantom{3(2-5x)(2+5x)} &= (1+10x-75x^2)-(12-75x^2)\\
 +
&= 1+10x-75x^2-12+75x^2\\
 +
&= 1-12+10x-75x^2+75x^2\\
 +
&=-11+10x
 +
\end{align}
 +
</math>
 +
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 10:58, 13. Aug. 2008