Lösung 2.1:2a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_2a.gif </center> {{NAVCONTENT_STOP}}) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
<center> [[Bild:2_1_2a.gif]] </center> | <center> [[Bild:2_1_2a.gif]] </center> | ||
+ | First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket, | ||
+ | |||
+ | <math> | ||
+ | \qquad | ||
+ | \begin{align} | ||
+ | (x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\ | ||
+ | &= x^2-5x-4x+20-(6x^2-9x)\\ | ||
+ | &=x^2-5x-4x+20-6x^2+9x | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | Then, gather together <math>x^2-, \, x- </math> and the constant terms and simplify | ||
+ | |||
+ | <math> | ||
+ | \qquad | ||
+ | \begin{align} | ||
+ | \phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\ | ||
+ | &= -5x^2+0+20\\ | ||
+ | &= -5x^2+20 | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 10:01, 13. Aug. 2008
First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket,
\displaystyle \qquad \begin{align} (x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\ &= x^2-5x-4x+20-(6x^2-9x)\\ &=x^2-5x-4x+20-6x^2+9x \end{align}
Then, gather together \displaystyle x^2-, \, x- and the constant terms and simplify
\displaystyle \qquad \begin{align} \phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\ &= -5x^2+0+20\\ &= -5x^2+20 \end{align}