Lösung 2.1:1e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_1e.gif </center> {{NAVCONTENT_STOP}}) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | <center> [[Bild:2_1_1e.gif]] </center> | + | <!--center> [[Bild:2_1_1e.gif]] </center--> |
+ | If we use the rule for squaring <math>(a-b)^2 = a^2-2ab+b^2 </math> with <math> a=x </math> and <math> b=7, </math> we obtain directly that | ||
+ | |||
+ | :<math> (x-7)^2=x^2-2 \cdot x \cdot 7 + 7^2 = x^2-14x+49.</math> | ||
+ | |||
+ | An alternative is to write the square as <math> (x-7)\cdot (x-7)</math> and then multiply the brackets in two steps | ||
+ | |||
+ | <math> | ||
+ | \qquad | ||
+ | \begin{align} | ||
+ | (x-7)\cdot (x-7) &= (x-7)\cdot x - (x-7)\cdot 7 \\ | ||
+ | &= x\cdot x-7 \cdot x -(x\cdot 7 - 7\cdot 7) \\ | ||
+ | &= x^2 -7x-(7x-49)\\ | ||
+ | & \stackrel{*}= x^2-7x-7x+49 \\ | ||
+ | &= x^2-(7+7)x+49\\ | ||
+ | &= x^2-14x+49 | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | In the line that has been marked with an asterisk, we have removed the bracket and at the same time changed signs on all terms inside the bracket. | ||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 09:35, 13. Aug. 2008
If we use the rule for squaring \displaystyle (a-b)^2 = a^2-2ab+b^2 with \displaystyle a=x and \displaystyle b=7, we obtain directly that
- \displaystyle (x-7)^2=x^2-2 \cdot x \cdot 7 + 7^2 = x^2-14x+49.
An alternative is to write the square as \displaystyle (x-7)\cdot (x-7) and then multiply the brackets in two steps
\displaystyle \qquad \begin{align} (x-7)\cdot (x-7) &= (x-7)\cdot x - (x-7)\cdot 7 \\ &= x\cdot x-7 \cdot x -(x\cdot 7 - 7\cdot 7) \\ &= x^2 -7x-(7x-49)\\ & \stackrel{*}= x^2-7x-7x+49 \\ &= x^2-(7+7)x+49\\ &= x^2-14x+49 \end{align}
In the line that has been marked with an asterisk, we have removed the bracket and at the same time changed signs on all terms inside the bracket.