2.3 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Regerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[2.3 Andragradsuttryck|Teori]]}}
+
{{Ej vald flik|[[2.3 Andragradsuttryck|Theory]]}}
-
{{Vald flik|[[2.3 Övningar|Övningar]]}}
+
{{Vald flik|[[2.3 Övningar|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 2.3:1===
+
===Exercise 2.3:1===
<div class="ovning">
<div class="ovning">
-
Kvadratkomplettera f&ouml;ljande uttryck
+
Complete the square of the expressions
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 22: Zeile 22:
</div>{{#NAVCONTENT:Svar|Svar 2.3:1|Lösning a|Lösning 2.3:1a|Lösning b|Lösning 2.3:1b|Lösning c|Lösning 2.3:1c|Lösning d|Lösning 2.3:1d}}
</div>{{#NAVCONTENT:Svar|Svar 2.3:1|Lösning a|Lösning 2.3:1a|Lösning b|Lösning 2.3:1b|Lösning c|Lösning 2.3:1c|Lösning d|Lösning 2.3:1d}}
-
===Övning 2.3:2===
+
===Exercise 2.3:2===
<div class="ovning">
<div class="ovning">
-
L&ouml;s f&ouml;ljande andragradsekvationer med kvadratkomplettering
+
Solve the following second order equations by completing the square
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 42: Zeile 42:
</div>{{#NAVCONTENT:Svar|Svar 2.3:2|Lösning a|Lösning 2.3:2a|Lösning b|Lösning 2.3:2b|Lösning c|Lösning 2.3:2c|Lösning d|Lösning 2.3:2d|Lösning e|Lösning 2.3:2e|Lösning f|Lösning 2.3:2f}}
</div>{{#NAVCONTENT:Svar|Svar 2.3:2|Lösning a|Lösning 2.3:2a|Lösning b|Lösning 2.3:2b|Lösning c|Lösning 2.3:2c|Lösning d|Lösning 2.3:2d|Lösning e|Lösning 2.3:2e|Lösning f|Lösning 2.3:2f}}
-
===Övning 2.3:3===
+
===Exercise 2.3:3===
<div class="ovning">
<div class="ovning">
-
L&ouml;s f&ouml;ljande ekvationer direkt
+
Solve the following equations directly
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 63: Zeile 63:
</div>{{#NAVCONTENT:Svar|Svar 2.3:3|Lösning a|Lösning 2.3:3a|Lösning b|Lösning 2.3:3b|Lösning c|Lösning 2.3:3c|Lösning d|Lösning 2.3:3d|Lösning e|Lösning 2.3:3e|Lösning f|Lösning 2.3:3f}}
</div>{{#NAVCONTENT:Svar|Svar 2.3:3|Lösning a|Lösning 2.3:3a|Lösning b|Lösning 2.3:3b|Lösning c|Lösning 2.3:3c|Lösning d|Lösning 2.3:3d|Lösning e|Lösning 2.3:3e|Lösning f|Lösning 2.3:3f}}
-
===Övning 2.3:4===
+
===Exercise 2.3:4===
<div class="ovning">
<div class="ovning">
-
Best&auml;m en andragradsekvation som har r&ouml;tterna
+
Determine a second-degree equation which has roots
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | <math>-1\ </math> och <math>\ 2</math>
+
|width="100%" | <math>-1\ </math> and <math>\ 2</math>
|-
|-
|b)
|b)
-
|width="100" | <math>1+\sqrt{3}\ </math> och <math>\ 1-\sqrt{3}</math>
+
|width="100" | <math>1+\sqrt{3}\ </math> and <math>\ 1-\sqrt{3}</math>
|-
|-
|c)
|c)
-
|width="100" | <math>3\ </math> och <math>\ \sqrt{3}</math>
+
|width="100" | <math>3\ </math> and <math>\ \sqrt{3}</math>
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 2.3:4|Lösning a|Lösning 2.3:4a|Lösning b|Lösning 2.3:4b|Lösning c|Lösning 2.3:4c}}
</div>{{#NAVCONTENT:Svar|Svar 2.3:4|Lösning a|Lösning 2.3:4a|Lösning b|Lösning 2.3:4b|Lösning c|Lösning 2.3:4c}}
-
===Övning 2.3:5===
+
===Exercise 2.3:5===
<div class="ovning">
<div class="ovning">
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | Best&auml;m en andragradsekvation som bara har <math>\,-7\,</math> som rot.
+
|width="100%" | Determine a second-degree equation which only has <math>\,-7\,</math> as a root.
|-
|-
|b)
|b)
-
|width="100" | Best&auml;m ett v&auml;rde p&aring; <math>\,x\,</math> som g&ouml;r att uttrycket <math>\,4x^2-28x+48\,</math> &auml;r negativt.
+
|width="100" | Determine a value of <math>\,x\,</math> which makes the expression <math>\,4x^2-28x+48\,</math> be negative.
|-
|-
|c)
|c)
-
|width="100" | Ekvationen <math>\,x^2+4x+b=0\,</math> har en rot <math>\,x=1\,</math>. Best&auml;m v&auml;rdet p&aring; konstanten <math>\,b\,</math>.
+
|width="100" | The equation <math>\,x^2+4x+b=0\,</math> has one root at <math>\,x=1\,</math>. Determine the value of the constant <math>\,b\,</math>.
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 2.3:5|Lösning a|Lösning 2.3:5a|Lösning b|Lösning 2.3:5b|Lösning c|Lösning 2.3:5c}}
</div>{{#NAVCONTENT:Svar|Svar 2.3:5|Lösning a|Lösning 2.3:5a|Lösning b|Lösning 2.3:5b|Lösning c|Lösning 2.3:5c}}
-
===Övning 2.3:6===
+
===Exercise 2.3:6===
<div class="ovning">
<div class="ovning">
-
Best&auml;m det minsta v&auml;rde som f&ouml;ljande polynom antar
+
Determine the smallest value that the following polynomial can take
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 106: Zeile 106:
-
===Övning 2.3:7===
+
===Exercise 2.3:7===
<div class="ovning">
<div class="ovning">
-
Best&auml;m det st&ouml;rsta v&auml;rde som f&ouml;ljande polynom antar
+
Determine the largest value that the following polynomials can take.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 119: Zeile 119:
</div>{{#NAVCONTENT:Svar|Svar 2.3:7|Lösning a|Lösning 2.3:7a|Lösning b|Lösning 2.3:7b|Lösning c|Lösning 2.3:7c}}
</div>{{#NAVCONTENT:Svar|Svar 2.3:7|Lösning a|Lösning 2.3:7a|Lösning b|Lösning 2.3:7b|Lösning c|Lösning 2.3:7c}}
-
===Övning 2.3:8===
+
===Exercise 2.3:8===
<div class="ovning">
<div class="ovning">
-
Skissera grafen till f&ouml;ljande funktioner
+
Sketch the graph of the following functions
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 132: Zeile 132:
</div>{{#NAVCONTENT:Svar|Svar 2.3:8|Lösning a|Lösning 2.3:8a|Lösning b|Lösning 2.3:8b|Lösning c|Lösning 2.3:8c}}
</div>{{#NAVCONTENT:Svar|Svar 2.3:8|Lösning a|Lösning 2.3:8a|Lösning b|Lösning 2.3:8b|Lösning c|Lösning 2.3:8c}}
-
===Övning 2.3:9===
+
===Exercise 2.3:9===
<div class="ovning">
<div class="ovning">
-
Hitta alla sk&auml;rningspunkter mellan x-axeln och kurvan
+
Find all the points where the x-axis and the following curves intersect.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 145: Zeile 145:
</div>{{#NAVCONTENT:Svar|Svar 2.3:9|Lösning a|Lösning 2.3:9a|Lösning b|Lösning 2.3:9b|Lösning c|Lösning 2.3:9c}}
</div>{{#NAVCONTENT:Svar|Svar 2.3:9|Lösning a|Lösning 2.3:9a|Lösning b|Lösning 2.3:9b|Lösning c|Lösning 2.3:9c}}
-
===Övning 2.3:10===
+
===Exercise 2.3:10===
<div class="ovning">
<div class="ovning">
-
Rita in i ett ''xy''-plan alla punkter vars koordinater <math>\,(x,y)\,</math> uppfyller
+
In the ''xy''-plane, draw in all the points whose coordinates <math>\,(x,y)\,</math> satisfy
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)

Version vom 13:36, 3. Aug. 2008

 

Vorlage:Ej vald flik Vorlage:Vald flik

 

Exercise 2.3:1

Complete the square of the expressions

a) \displaystyle x^2-2x b) \displaystyle x^2+2x-1 c) \displaystyle 5+2x-x^2 d) \displaystyle x^2+5x+3

Exercise 2.3:2

Solve the following second order equations by completing the square

a) \displaystyle x^2-4x+3=0 b) \displaystyle y^2+2y-15=0 c) \displaystyle y^2+3y+4=0
d) \displaystyle 4x^2-28x+13=0 e) \displaystyle 5x^2+2x-3=0 f) \displaystyle 3x^2-10x+8=0

Exercise 2.3:3

Solve the following equations directly

a) \displaystyle x(x+3)=0 b) \displaystyle (x-3)(x+5)=0
c) \displaystyle 5(3x-2)(x+8)=0 d) \displaystyle x(x+3)-x(2x-9)=0
e) \displaystyle (x+3)(x-1)-(x+3)(2x-9)=0 f) \displaystyle x(x^2-2x)+x(2-x)=0

Exercise 2.3:4

Determine a second-degree equation which has roots

a) \displaystyle -1\ and \displaystyle \ 2
b) \displaystyle 1+\sqrt{3}\ and \displaystyle \ 1-\sqrt{3}
c) \displaystyle 3\ and \displaystyle \ \sqrt{3}

Exercise 2.3:5

a) Determine a second-degree equation which only has \displaystyle \,-7\, as a root.
b) Determine a value of \displaystyle \,x\, which makes the expression \displaystyle \,4x^2-28x+48\, be negative.
c) The equation \displaystyle \,x^2+4x+b=0\, has one root at \displaystyle \,x=1\,. Determine the value of the constant \displaystyle \,b\,.

Exercise 2.3:6

Determine the smallest value that the following polynomial can take

a) \displaystyle x^2-2x+1 b) \displaystyle x^2-4x+2 c) \displaystyle x^2-5x+7


Exercise 2.3:7

Determine the largest value that the following polynomials can take.

a) \displaystyle 1-x^2 b) \displaystyle -x^2+3x-4 c) \displaystyle x^2+x+1

Exercise 2.3:8

Sketch the graph of the following functions

a) \displaystyle f(x)=x^2+1 b) \displaystyle f(x)=(x-1)^2+2 c) \displaystyle f(x)=x^2-6x+11

Exercise 2.3:9

Find all the points where the x-axis and the following curves intersect.

a) \displaystyle y=x^2-1 b) \displaystyle y=x^2-5x+6 c) \displaystyle y=3x^2-12x+9

Exercise 2.3:10

In the xy-plane, draw in all the points whose coordinates \displaystyle \,(x,y)\, satisfy

a) \displaystyle y \geq x^2\ och \displaystyle \ y \leq 1 b) \displaystyle y \leq 1-x^2\ och \displaystyle \ x \geq 2y-3
c) \displaystyle 1 \geq x \geq y^2 d) \displaystyle x^2 \leq y \leq x