4.1 Winkel und Kreise
Aus Online Mathematik Brückenkurs 1
K (Regerate images and tabs) |
|||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{Vald flik|[[4.1 Vinklar och cirklar| | + | {{Vald flik|[[4.1 Vinklar och cirklar|Theory]]}} |
- | {{Ej vald flik|[[4.1 Övningar| | + | {{Ej vald flik|[[4.1 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Contents:''' |
- | * | + | *Various angle measures (degrees, radians and revolutions) |
- | *Pythagoras | + | * Pythagoras' theorem |
- | * | + | *Formula for distance in the plane |
- | * | + | * Equation of a circle |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learned : | |
- | * | + | *To convert between degrees, radians and revolutions. |
- | * | + | *Calculate the area and circumference of sectors of a circle. |
- | * | + | *The concepts of right-angled triangles including its legs and hypotenuse. |
- | * | + | *To formulate and use Pythagoras' theorem. |
- | * | + | *To calculate the distance between two points in the plane. |
- | * | + | *To sketch circles by completing the square in their equations. |
- | * | + | *The concepts of unit circle, tangent, radius, diameter, circumference, chord and arc. |
- | * | + | *To solve geometric problems that contain circles. |
}} | }} | ||
- | == | + | == Angle measures == |
- | + | There are several different units for measuring angles, which are used in different contexts. The two most common within mathematics are degrees and radians. | |
- | *''' | + | *'''Degrees .''' If a complete revolution is divided into 360 parts, then each part is called 1 degree. Degrees are designated by<math>{}^\circ</math>. |
[[Bild:Gradskiva - 57°.gif||center]] | [[Bild:Gradskiva - 57°.gif||center]] | ||
- | *''' | + | *'''Radians.''' Another way to measure an angle is to use the length of the arc which subtends the angle in relation to the radius as a measure of the angle. This unit is called radian. A revolution is <math>2\pi</math> radians as the circumference of a circle is <math>2\pi r</math>, where <math>r</math> is the radius of the circle. |
[[Bild:Gradskiva - Radianer.gif||center]] | [[Bild:Gradskiva - Radianer.gif||center]] | ||
- | + | A complete revolution is <math>360^\circ</math> or <math>2\pi</math> radians which means | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
- | &1^\circ = \frac{1}{360} \cdot 2\pi\ \mbox{ | + | &1^\circ = \frac{1}{360} \cdot 2\pi\ \mbox{ radians } |
- | = \frac{\pi}{180}\ \mbox{ | + | = \frac{\pi}{180}\ \mbox{ radians,}\\ |
&1\ \mbox{ radian } = \frac{1}{2\pi} \cdot 360^\circ | &1\ \mbox{ radian } = \frac{1}{2\pi} \cdot 360^\circ | ||
= \frac{180^\circ}{\pi}\,\mbox{.} | = \frac{180^\circ}{\pi}\,\mbox{.} | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | These conversion relations can be used to convert between degrees and radians. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
<ol type="a"> | <ol type="a"> | ||
<li><math>30^\circ = 30 \cdot 1^\circ | <li><math>30^\circ = 30 \cdot 1^\circ | ||
- | = 30 \cdot \frac{\pi}{180}\ \mbox{ | + | = 30 \cdot \frac{\pi}{180}\ \mbox{ radians } |
- | = \frac{\pi}{6}\ \mbox{ | + | = \frac{\pi}{6}\ \mbox{ radians }</math></li> |
- | <li><math>\frac{\pi}{8}\ \mbox { | + | <li><math>\frac{\pi}{8}\ \mbox { radians } |
- | = \frac{\pi}{8} \cdot (1 \; \mbox{ | + | = \frac{\pi}{8} \cdot (1 \; \mbox{radians}\,) |
= \frac{\pi}{8} \cdot \frac{180^\circ}{\pi} | = \frac{\pi}{8} \cdot \frac{180^\circ}{\pi} | ||
= 22{,}5^\circ</math></li> | = 22{,}5^\circ</math></li> | ||
Zeile 66: | Zeile 66: | ||
</div> | </div> | ||
- | + | In some contexts, it may be useful to talk about negative angles and angles greater than 360°. This means that the same direction can be designated by different angles that differ from each other by an integral number of revolutions. | |
<center>{{:4.1 - Figur - Vinklarna 45°, -315° och 405°}}</center> | <center>{{:4.1 - Figur - Vinklarna 45°, -315° och 405°}}</center> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> The angles <math>-55^\circ</math> and <math>665^\circ |
- | </math> | + | </math> indicate the same direction because |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
-55^\circ + 2 \cdot 360^\circ = 665^\circ\,\mbox{.}</math>}}</li> | -55^\circ + 2 \cdot 360^\circ = 665^\circ\,\mbox{.}</math>}}</li> | ||
- | <li> | + | <li> The angles <math>\frac{3\pi}{7}</math> and <math> |
- | -\frac{11\pi}{7}</math> | + | -\frac{11\pi}{7}</math> indicate the same direction because |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
\frac{3\pi}{7} - 2\pi = -\frac{11\pi}{7}\,\mbox{.}</math>}}</li> | \frac{3\pi}{7} - 2\pi = -\frac{11\pi}{7}\,\mbox{.}</math>}}</li> | ||
- | <li> | + | <li> The angles <math>36^\circ</math> and <math> |
- | 216^\circ</math> | + | 216^\circ</math> do not specify the same direction, but opposite directions since |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
36^\circ + 180^\circ = 216^\circ\,\mbox{.}</math>}}</li> | 36^\circ + 180^\circ = 216^\circ\,\mbox{.}</math>}}</li> | ||
Zeile 92: | Zeile 92: | ||
- | == | + | == Formula for distance in the plane == |
- | Pythagoras | + | The theorem of Pythagoras is one of the most famous theorems in mathematics and says that in a right-angled triangle with the legs <math>a</math> and <math>b</math>, and the hypotenuse <math>c</math> then |
<div class="regel"> | <div class="regel"> | ||
{|width="100%" | {|width="100%" | ||
- | |width="100%"|'''Pythagoras | + | |width="100%"|'''Pythagoras theorem: :''' |
{{Fristående formel||<math>c^2 = a^2 + b^2\,\mbox{.}</math>}} | {{Fristående formel||<math>c^2 = a^2 + b^2\,\mbox{.}</math>}} | ||
|align="right"|{{:4.1 - Figur - Pythagoras sats}} | |align="right"|{{:4.1 - Figur - Pythagoras sats}} | ||
Zeile 105: | Zeile 105: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
{| width="100%" | {| width="100%" | ||
- | |width="100%"| | + | |width="100%"| The triangle on the right is |
{{Fristående formel||<math>c^2= 3^2 + 4^2 = 9 +16 = 25</math>}} | {{Fristående formel||<math>c^2= 3^2 + 4^2 = 9 +16 = 25</math>}} | ||
- | + | and therefore hypotenuse <math>c</math> equal to | |
{{Fristående formel||<math>c=\sqrt{25} = 5\,\mbox{.}</math>}} | {{Fristående formel||<math>c=\sqrt{25} = 5\,\mbox{.}</math>}} | ||
|align="right"|{{:4.1 - Figur - Rätvinklig triangel med sidor 3, 4 och 5}} | |align="right"|{{:4.1 - Figur - Rätvinklig triangel med sidor 3, 4 och 5}} | ||
Zeile 116: | Zeile 116: | ||
</div> | </div> | ||
- | Pythagoras | + | Pythagoras' theorem can be used to calculate the distance between two points in a coordinate system. |
<div class="regel"> | <div class="regel"> | ||
- | ''' | + | '''Formula for distance:''' |
- | + | The distance <math>d</math> between two points with coordinates <math>(x,y)</math> and <math>(a,b)</math> är | |
{{Fristående formel||<math>d = \sqrt{(x – a)^2 + (y – b)^2}\,\mbox{.}</math>}} | {{Fristående formel||<math>d = \sqrt{(x – a)^2 + (y – b)^2}\,\mbox{.}</math>}} | ||
</div> | </div> | ||
- | + | The line joining the points is the hypotenuse of a triangle whose legs are parallel to the coordinate axes. | |
<center>{{:4.1 - Figur - Avståndsformeln}}</center> | <center>{{:4.1 - Figur - Avståndsformeln}}</center> | ||
- | + | The legs of the triangle have lengths equal to the the difference in the ''x''- and ''y''-directions of the points, that is. <math>|x-a|</math> and <math>|y-b|</math>. Pythagoras theorem then gives the formula for the distance. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li>The distance between <math>(1,2)</math> and <math>(3,1)</math> is |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
d = \sqrt{ (1-3)^2 + (2-1)^2} | d = \sqrt{ (1-3)^2 + (2-1)^2} | ||
Zeile 141: | Zeile 141: | ||
= \sqrt{5}\,\mbox{.}</math>}}</li> | = \sqrt{5}\,\mbox{.}</math>}}</li> | ||
- | <li> | + | <li>The distance between <math>(-1,0)</math> and <math>(-2,-5)</math> is |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
d = \sqrt{ (-1-(-2))^2 + (0-(-5))^2} | d = \sqrt{ (-1-(-2))^2 + (0-(-5))^2} | ||
Zeile 151: | Zeile 151: | ||
- | == | + | == Circles == |
- | + | A circle consists of all the points that are at a given fixed distance <math>r</math> from a point <math>(a,b)</math>. | |
<center>{{:4.1 - Figur - Cirkel}}</center> | <center>{{:4.1 - Figur - Cirkel}}</center> | ||
- | + | The distance <math>r</math> is called the circles radius and the point <math>(a,b)</math> is its centre. The figure below shows the other important concepts. | |
{| align="center" | {| align="center" | ||
Zeile 173: | Zeile 173: | ||
|align="center"|Tangent | |align="center"|Tangent | ||
|| | || | ||
- | |align="center"| | + | |align="center"| Chord |
|| | || | ||
- | |align="center"| | + | |align="center"| Secant |
|- | |- | ||
|height="15px"| | |height="15px"| | ||
Zeile 187: | Zeile 187: | ||
|align="center"|{{:4.1 - Figur - Cirkelsegment}} | |align="center"|{{:4.1 - Figur - Cirkelsegment}} | ||
|- | |- | ||
- | |align="center"| | + | |align="center"| Arc of a circle |
|| | || | ||
- | |align="center"| | + | |align="center"| circumference |
|| | || | ||
- | |align="center"| | + | |align="center"| sector of a circle |
|| | || | ||
- | |align="center"| | + | |align="center"|segment of a circle |
|} | |} | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
{| width="100%" | {| width="100%" | ||
- | || | + | ||A sector of a circle is given in the figure on the right. |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Determine its arc length . |
<br> | <br> | ||
<br> | <br> | ||
- | + | The central angle <math>50^\circ</math> is in radians | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
50^\circ = 50 \cdot 1^\circ | 50^\circ = 50 \cdot 1^\circ | ||
- | = 50 \cdot \frac{\pi}{180}\ \mbox{ | + | = 50 \cdot \frac{\pi}{180}\ \mbox{ radians } |
- | = \frac{5\pi}{18}\ \mbox{ | + | = \frac{5\pi}{18}\ \mbox{ radians. }</math>}} |
</li> | </li> | ||
</ol> | </ol> | ||
Zeile 216: | Zeile 216: | ||
|} | |} | ||
<ol style="list-style-type:none; padding-top:0; margin-top:0;"> | <ol style="list-style-type:none; padding-top:0; margin-top:0;"> | ||
- | <li> | + | <li>The way radians have been defined means that the arc length is the radius multiplied by the angle measured in radians, |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
- | 3 \cdot \frac{5\pi}{18}\ \mbox{ | + | 3 \cdot \frac{5\pi}{18}\ \mbox{units } |
- | = \frac{5\pi}{6}\ \mbox{ | + | = \frac{5\pi}{6}\ \mbox{ lunits . }</math>}}</li> |
</ol> | </ol> | ||
<ol type="a" start="2"> | <ol type="a" start="2"> | ||
- | <li> | + | <li>Determine the area of the circle segment. |
<br> | <br> | ||
<br> | <br> | ||
- | + | The circle segments share of the entire circle is | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
\frac{50^\circ}{360^\circ} = \frac{5}{36}</math>}} | \frac{50^\circ}{360^\circ} = \frac{5}{36}</math>}} | ||
- | + | and this means that its area is <math>\frac{5}{36}</math> parts of the circle area ,which is <math>\pi r^2 = \pi 3^2 = 9\pi</math>, i.e. | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
- | \frac{5}{36} \cdot 9\pi\ \mbox{ | + | \frac{5}{36} \cdot 9\pi\ \mbox{ units }= \frac{5\pi}{4}\ \mbox{ units }</math>}}</li> |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | A point <math>(x,y)</math> lies on the circle that has its center at <math>(a,b)</math> and radius <math>r</math>, if its distance from the centre is equal to <math>r</math>. This condition can be formulated with the distance formula as | |
<div class="regel"> | <div class="regel"> | ||
{| width="100%" | {| width="100%" | ||
- | ||''' | + | ||'''Circle equation: ''' |
{{Fristående formel||<math>(x – a)^2 + (y – b)^2 = r^2\,\mbox{.}</math>}} | {{Fristående formel||<math>(x – a)^2 + (y – b)^2 = r^2\,\mbox{.}</math>}} | ||
|align="right"|{{:4.1 - Figur - Cirkelns ekvation}} | |align="right"|{{:4.1 - Figur - Cirkelns ekvation}} | ||
Zeile 244: | Zeile 244: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
{| width="100%" | {| width="100%" | ||
|- | |- | ||
|width="100%"| | |width="100%"| | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math>(x-1)^2 + (y-2)^2 = 9\quad</math> | + | <li><math>(x-1)^2 + (y-2)^2 = 9\quad</math> is the equation for a circle with its center at <math>(1,2)</math> and radius <math>\sqrt{9} = 3</math>.</li> |
</ol> | </ol> | ||
|align="right"|{{:4.1 - Figur - Ekvationen (x - 1)² + (y - 2)² = 9}} | |align="right"|{{:4.1 - Figur - Ekvationen (x - 1)² + (y - 2)² = 9}} | ||
Zeile 255: | Zeile 255: | ||
|width="100%"| | |width="100%"| | ||
<ol type="a" start=2> | <ol type="a" start=2> | ||
- | <li><math>x^2 + (y-1)^2 = 1\quad</math> | + | <li><math>x^2 + (y-1)^2 = 1\quad</math> can be written as <math>(x-0)^2 + (y-1)^2 = 1</math> and is the equation of a circle with its centre at <math>(0,1)</math> and having a radius <math>\sqrt{1} = 1</math>.</li> |
</ol> | </ol> | ||
|align="right"|{{:4.1 - Figur - Ekvationen x² + (y - 1)² = 1}} | |align="right"|{{:4.1 - Figur - Ekvationen x² + (y - 1)² = 1}} | ||
Zeile 261: | Zeile 261: | ||
|width="100%"| | |width="100%"| | ||
<ol type="a" start=3> | <ol type="a" start=3> | ||
- | <li><math>(x+1)^2 + (y-3)^2 = 5\quad</math> | + | <li><math>(x+1)^2 + (y-3)^2 = 5\quad</math> can be written as <math>(x-(-1))^2 + (y-3)^2 = 5</math> and is the equation of a circle with its centre at <math>(-1,3)</math> and having a radius <math>\sqrt{5} \approx 2{,}236</math>.</li> |
</ol> | </ol> | ||
|align="right"|{{:4.1 - Figur - Ekvationen (x + 1)² + (y - 3)² = 5}} | |align="right"|{{:4.1 - Figur - Ekvationen (x + 1)² + (y - 3)² = 5}} | ||
Zeile 268: | Zeile 268: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Does the point <math>(1,2)</math> lie on the circle <math>(x-4)^2 +y^2=13</math>? |
<br> | <br> | ||
<br> | <br> | ||
- | + | Inserting the coordinates of the point <math>x=1</math> and <math>y=2</math> in the circle equation, we have that | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
- | \mbox{ | + | \mbox{LS } &= (1-4)^2+2^2\\ |
- | &= (-3)^2+2^2 = 9+4 = 13 = \mbox{ | + | &= (-3)^2+2^2 = 9+4 = 13 = \mbox{RS}\,\mbox{.} |
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | Since the point satisfies the circle equation it lies on the circle. | |
<center>{{:4.1 - Figur - Ekvationen (x - 4)² + y² = 13}}</center></li> | <center>{{:4.1 - Figur - Ekvationen (x - 4)² + y² = 13}}</center></li> | ||
- | <li> | + | <li> Determine the equation for the circle that has its center at <math>(3,4)</math> and goes through the point <math>(1,0)</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Since the point <math>(1,0)</math> lies on the circle the radius of the circle must be equal to the distance of the point from <math>(1,0)</math> to the midpoint <math>(3,4)</math>. The distance formula gives that this distance is | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
c = \sqrt{(3-1)^2 + (4-0)^2} = \sqrt{4 +16} = \sqrt{20} \, \mbox{.}</math>}} | c = \sqrt{(3-1)^2 + (4-0)^2} = \sqrt{4 +16} = \sqrt{20} \, \mbox{.}</math>}} | ||
- | + | The circle equation is therefore | |
{{Fristående formel||<math>(x-3)^2 + (y-4)^2 = 20 \; \mbox{.}</math>}} | {{Fristående formel||<math>(x-3)^2 + (y-4)^2 = 20 \; \mbox{.}</math>}} | ||
<center>{{:4.1 - Figur - Ekvationen (x - 3)² + (y - 4)² = 20}}</center></li> | <center>{{:4.1 - Figur - Ekvationen (x - 3)² + (y - 4)² = 20}}</center></li> | ||
Zeile 296: | Zeile 296: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
- | + | Determine the centre and radius of the circle with equation <math>\ x^2 + y^2 – 2x + 4y + 1 = 0</math>. | |
- | + | Let us try to write the circle equation in the form | |
{{Fristående formel||<math>(x – a)^2 + (y – b)^2 = r^2</math>}} | {{Fristående formel||<math>(x – a)^2 + (y – b)^2 = r^2</math>}} | ||
- | + | because then we can directly read from this that the midpoint is <math>(a,b)</math> and the radius is <math>r</math>. | |
- | + | Start by completing the square for the terms containing <math>x</math> on the left-hand side | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
\underline{x^2-2x\vphantom{(}} + y^2+4y + 1 | \underline{x^2-2x\vphantom{(}} + y^2+4y + 1 | ||
= \underline{(x-1)^2-1^2} + y^2+4y + 1</math>}} | = \underline{(x-1)^2-1^2} + y^2+4y + 1</math>}} | ||
- | ( | + | (the underlined terms shows the terms involved). |
- | + | Complete the square for the terms containing <math>y</math> | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
(x-1)^2-1^2 + \underline{y^2+4y} + 1 | (x-1)^2-1^2 + \underline{y^2+4y} + 1 | ||
= (x-1)^2-1^2 + \underline{(y+2)^2-2^2} + 1\,\mbox{.}</math>}} | = (x-1)^2-1^2 + \underline{(y+2)^2-2^2} + 1\,\mbox{.}</math>}} | ||
- | + | The left-hand side is equal to | |
{{Fristående formel||<math> (x-1)^2 + (y+2)^2-4 </math>}} | {{Fristående formel||<math> (x-1)^2 + (y+2)^2-4 </math>}} | ||
- | + | and moving over the 4 to to the right-hand side we get the circle equation | |
{{Fristående formel||<math> (x-1)^2 + (y+2)^2 = 4 \, \mbox{.}</math>}} | {{Fristående formel||<math> (x-1)^2 + (y+2)^2 = 4 \, \mbox{.}</math>}} | ||
- | + | We can interpret this that the centre is <math>(1,-2)</math> and the radius is <math>\sqrt{4}= 2</math>. | |
<center>{{:4.1 - Figur - Ekvationen x² + y² - 2x + 4y + 1 = 0}}</center> | <center>{{:4.1 - Figur - Ekvationen x² + y² - 2x + 4y + 1 = 0}}</center> | ||
Zeile 328: | Zeile 328: | ||
- | [[4.1 Övningar| | + | [[4.1 Övningar|Exercises]] |
<div class="inforuta" style="width:580px;"> | <div class="inforuta" style="width:580px;"> | ||
- | ''' | + | '''Study advice''' |
- | ''' | + | '''The basic and final tests''' |
- | + | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | |
- | ''' | + | '''Keep in mind that:''' |
- | ''' | + | '''Reviews''' |
- | + | For those of you who want to deepen your studies or need more detailed explanations consider the following references: | |
- | [http://sv.wikipedia.org/wiki/Pythagoras_sats | + | [http://sv.wikipedia.org/wiki/Pythagoras_sats Learn more about Pythagoras theorem in English Wikipedia ] |
- | [http://mathworld.wolfram.com/Circle.html | + | [http://mathworld.wolfram.com/Circle.html Read more in Mathworld about the circle ] |
'''Länktips''' | '''Länktips''' | ||
- | [http://www.math.kth.se/online/images/sinus_och_cosinus_i_enhetscirkeln.swf | + | [http://www.math.kth.se/online/images/sinus_och_cosinus_i_enhetscirkeln.swf Interactive experiments: the sine and cosine on the unit circle ] (Flash) |
</div> | </div> |
Version vom 12:47, 15. Jul. 2008
Contents:
- Various angle measures (degrees, radians and revolutions)
- Pythagoras' theorem
- Formula for distance in the plane
- Equation of a circle
Learning outcomes:
After this section, you will have learned :
- To convert between degrees, radians and revolutions.
- Calculate the area and circumference of sectors of a circle.
- The concepts of right-angled triangles including its legs and hypotenuse.
- To formulate and use Pythagoras' theorem.
- To calculate the distance between two points in the plane.
- To sketch circles by completing the square in their equations.
- The concepts of unit circle, tangent, radius, diameter, circumference, chord and arc.
- To solve geometric problems that contain circles.
Angle measures
There are several different units for measuring angles, which are used in different contexts. The two most common within mathematics are degrees and radians.
- Degrees . If a complete revolution is divided into 360 parts, then each part is called 1 degree. Degrees are designated by\displaystyle {}^\circ.
- Radians. Another way to measure an angle is to use the length of the arc which subtends the angle in relation to the radius as a measure of the angle. This unit is called radian. A revolution is \displaystyle 2\pi radians as the circumference of a circle is \displaystyle 2\pi r, where \displaystyle r is the radius of the circle.
A complete revolution is \displaystyle 360^\circ or \displaystyle 2\pi radians which means
Vorlage:Fristående formel
These conversion relations can be used to convert between degrees and radians.
Example 1
- \displaystyle 30^\circ = 30 \cdot 1^\circ = 30 \cdot \frac{\pi}{180}\ \mbox{ radians } = \frac{\pi}{6}\ \mbox{ radians }
- \displaystyle \frac{\pi}{8}\ \mbox { radians } = \frac{\pi}{8} \cdot (1 \; \mbox{radians}\,) = \frac{\pi}{8} \cdot \frac{180^\circ}{\pi} = 22{,}5^\circ
In some contexts, it may be useful to talk about negative angles and angles greater than 360°. This means that the same direction can be designated by different angles that differ from each other by an integral number of revolutions.
Example 2
- The angles \displaystyle -55^\circ and \displaystyle 665^\circ indicate the same direction because Vorlage:Fristående formel
- The angles \displaystyle \frac{3\pi}{7} and \displaystyle -\frac{11\pi}{7} indicate the same direction because Vorlage:Fristående formel
- The angles \displaystyle 36^\circ and \displaystyle 216^\circ do not specify the same direction, but opposite directions since Vorlage:Fristående formel
Formula for distance in the plane
The theorem of Pythagoras is one of the most famous theorems in mathematics and says that in a right-angled triangle with the legs \displaystyle a and \displaystyle b, and the hypotenuse \displaystyle c then
Pythagoras theorem: : | 4.1 - Figur - Pythagoras sats |
Example 3
The triangle on the right is
Vorlage:Fristående formel and therefore hypotenuse \displaystyle c equal to Vorlage:Fristående formel | 4.1 - Figur - Rätvinklig triangel med sidor 3, 4 och 5 |
Pythagoras' theorem can be used to calculate the distance between two points in a coordinate system.
Formula for distance:
The distance \displaystyle d between two points with coordinates \displaystyle (x,y) and \displaystyle (a,b) är Vorlage:Fristående formel
The line joining the points is the hypotenuse of a triangle whose legs are parallel to the coordinate axes.
The legs of the triangle have lengths equal to the the difference in the x- and y-directions of the points, that is. \displaystyle |x-a| and \displaystyle |y-b|. Pythagoras theorem then gives the formula for the distance.
Example 4
- The distance between \displaystyle (1,2) and \displaystyle (3,1) is Vorlage:Fristående formel
- The distance between \displaystyle (-1,0) and \displaystyle (-2,-5) is Vorlage:Fristående formel
Circles
A circle consists of all the points that are at a given fixed distance \displaystyle r from a point \displaystyle (a,b).
The distance \displaystyle r is called the circles radius and the point \displaystyle (a,b) is its centre. The figure below shows the other important concepts.
4.1 - Figur - Diameter | 4.1 - Figur - Tangent | 4.1 - Figur - Korda | 4.1 - Figur - Sekant | |||
Diameter | Tangent | Chord | Secant | |||
4.1 - Figur - Cirkelbåge | 4.1 - Figur - Periferi | 4.1 - Figur - Cirkelsektor | 4.1 - Figur - Cirkelsegment | |||
Arc of a circle | circumference | sector of a circle | segment of a circle |
Example 5
A sector of a circle is given in the figure on the right.
|
- The way radians have been defined means that the arc length is the radius multiplied by the angle measured in radians, Vorlage:Fristående formel
- Determine the area of the circle segment.
The circle segments share of the entire circle is Vorlage:Fristående formel and this means that its area is \displaystyle \frac{5}{36} parts of the circle area ,which is \displaystyle \pi r^2 = \pi 3^2 = 9\pi, i.e. Vorlage:Fristående formel
A point \displaystyle (x,y) lies on the circle that has its center at \displaystyle (a,b) and radius \displaystyle r, if its distance from the centre is equal to \displaystyle r. This condition can be formulated with the distance formula as
Circle equation: | 4.1 - Figur - Cirkelns ekvation |
Example 6
| 4.1 - Figur - Ekvationen (x - 1)² + (y - 2)² = 9 |
| 4.1 - Figur - Ekvationen x² + (y - 1)² = 1 |
| 4.1 - Figur - Ekvationen (x + 1)² + (y - 3)² = 5 |
Example 7
- Does the point \displaystyle (1,2) lie on the circle \displaystyle (x-4)^2 +y^2=13?
Inserting the coordinates of the point \displaystyle x=1 and \displaystyle y=2 in the circle equation, we have that Vorlage:Fristående formel Since the point satisfies the circle equation it lies on the circle.4.1 - Figur - Ekvationen (x - 4)² + y² = 13 - Determine the equation for the circle that has its center at \displaystyle (3,4) and goes through the point \displaystyle (1,0).
Since the point \displaystyle (1,0) lies on the circle the radius of the circle must be equal to the distance of the point from \displaystyle (1,0) to the midpoint \displaystyle (3,4). The distance formula gives that this distance is Vorlage:Fristående formel The circle equation is therefore Vorlage:Fristående formel4.1 - Figur - Ekvationen (x - 3)² + (y - 4)² = 20
Example 8
Determine the centre and radius of the circle with equation \displaystyle \ x^2 + y^2 – 2x + 4y + 1 = 0.
Let us try to write the circle equation in the form
Vorlage:Fristående formel
because then we can directly read from this that the midpoint is \displaystyle (a,b) and the radius is \displaystyle r.
Start by completing the square for the terms containing \displaystyle x on the left-hand side Vorlage:Fristående formel (the underlined terms shows the terms involved).
Complete the square for the terms containing \displaystyle y Vorlage:Fristående formel
The left-hand side is equal to Vorlage:Fristående formel
and moving over the 4 to to the right-hand side we get the circle equation Vorlage:Fristående formel
We can interpret this that the centre is \displaystyle (1,-2) and the radius is \displaystyle \sqrt{4}= 2.
Study advice
The basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that:
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references:
Learn more about Pythagoras theorem in English Wikipedia
Read more in Mathworld about the circle
Länktips
Interactive experiments: the sine and cosine on the unit circle (Flash)