2.3 Quadratische Gleichungen
Aus Online Mathematik Brückenkurs 1
K (Regerate images and tabs) |
|||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{Vald flik|[[2.3 Andragradsuttryck| | + | {{Vald flik|[[2.3 Andragradsuttryck|Theory]]}} |
- | {{Ej vald flik|[[2.3 Övningar| | + | {{Ej vald flik|[[2.3 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Content:''' |
- | * | + | *Completing the square method |
- | * | + | *Quadratic equations |
- | * | + | * Faktorising |
- | * | + | * Parabolas |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learned to: | |
- | * | + | *Complete the square for expressions of degree two (second degree). |
- | * | + | *Solve quadratic equations by completing the square (not using a standard formula) and know how to check the answer. |
- | * | + | *Factorise expressions of the second degree. (when possible). |
- | * | + | *Directly solve factorised or almost factorised quadratic equations. |
- | * | + | *Determine the minimum / maximum value of an expression of degree two. |
- | * | + | *Sketch parabolas by completing the square method. |
}} | }} | ||
- | == | + | == quadratic equations == |
- | + | A quadratic equation is one that can be written as | |
{{Fristående formel||<math>x^2+px+q=0</math>}} | {{Fristående formel||<math>x^2+px+q=0</math>}} | ||
- | + | where <math>x</math> is the unknown and <math>p</math> and <math>q</math> are constants. | |
- | + | Simpler forms of quadratic equations can be solved directly by taking roots. | |
<div class="regel"> | <div class="regel"> | ||
- | + | The equation <math>x^2=a</math> where <math>a</math> is a positive number has two solutions (roots) <math>x=\sqrt{a}</math> and <math>x=-\sqrt{a}</math>. | |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>x^2 = 4 \quad</math> | + | <li><math>x^2 = 4 \quad</math> has the roots <math>x=\sqrt{4} = 2</math> and <math>x=-\sqrt{4}= -2</math>.</li> |
- | <li><math>2x^2=18 \quad</math> | + | <li><math>2x^2=18 \quad</math> is rewritten as <math>x^2=9</math> , and has the roots <math>x=\sqrt9 = 3</math> and <math>x=-\sqrt9 = -3</math>.</li> |
- | <li><math>3x^2-15=0 \quad</math> | + | <li><math>3x^2-15=0 \quad</math> can be rewritten as <math>x^2=5</math> and has the roots <math>x=\sqrt5 \approx 2{,}236</math> and <math>x=-\sqrt5 \approx -2{,}236</math>.</li> |
- | <li><math>9x^2+25=0\quad</math> | + | <li><math>9x^2+25=0\quad</math> has no solutions because the left-hand side will always be greater than or equal to 25 regardless of the value of <math>x</math> (the square <math>x^2</math> is always greater than or equal to zero). |
</ol> | </ol> | ||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li>Solve the equation <math>\ (x-1)^2 = 16</math>. <br><br> |
- | + | By considering <math>x-1</math> as the unknown and taking the roots one finds the equation has two solutions | |
- | *<math>x-1 =\sqrt{16} = 4\,</math> | + | *<math>x-1 =\sqrt{16} = 4\,</math> which gives that <math>x=1+4=5</math>, |
- | *<math>x-1 = -\sqrt{16} = -4\,</math> | + | *<math>x-1 = -\sqrt{16} = -4\,</math> which gives that <math>x=1-4=-3</math>. </li> |
- | <li> | + | <li> Solve the equation <math>\ 2(x+1)^2 -8=0</math>. <br><br> |
- | + | Move the term <math>8</math> over to the right-hand side and divide both sides by <math>2</math>, | |
{{Fristående formel||<math>(x+1)^2=4 \; \mbox{.}</math>}} | {{Fristående formel||<math>(x+1)^2=4 \; \mbox{.}</math>}} | ||
- | + | Taking the roots gives: | |
*<math>x+1 =\sqrt{4} = 2, \quad \mbox{dvs.} \quad x=-1+2=1\,\mbox{,}</math> | *<math>x+1 =\sqrt{4} = 2, \quad \mbox{dvs.} \quad x=-1+2=1\,\mbox{,}</math> | ||
*<math>x+1 = -\sqrt{4} = -2, \quad \mbox{dvs.} \quad x=-1-2=-3\,\mbox{.}</math></li> | *<math>x+1 = -\sqrt{4} = -2, \quad \mbox{dvs.} \quad x=-1-2=-3\,\mbox{.}</math></li> | ||
Zeile 67: | Zeile 67: | ||
</div> | </div> | ||
- | + | To solve a quadratic equation generally, we use a technique called completing the square. | |
- | + | If we consider the rule for expanding a quadratic, | |
{{Fristående formel||<math>x^2 + 2ax + a^2 = (x+a)^2</math>}} | {{Fristående formel||<math>x^2 + 2ax + a^2 = (x+a)^2</math>}} | ||
- | + | and subtract the <math>a^2</math> from both sides we get | |
<div class="regel"> | <div class="regel"> | ||
Zeile 79: | Zeile 79: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Solve the equation <math>\ x^2 +2x -8=0</math>. <br><br> |
- | + | One completes the square for <math>x^2+2x</math> (use <math>a=1</math> in the formula) | |
{{Fristående formel||<math>\underline{\vphantom{(}x^2+2x} -8 = \underline{(x+1)^2-1^2} -8 = (x+1)^2-9,</math>}} | {{Fristående formel||<math>\underline{\vphantom{(}x^2+2x} -8 = \underline{(x+1)^2-1^2} -8 = (x+1)^2-9,</math>}} | ||
- | + | where the underlined terms are those involved in the completion of the square. Thus the equation can be written as | |
{{Fristående formel||<math>(x+1)^2 -9 = 0,</math>}} | {{Fristående formel||<math>(x+1)^2 -9 = 0,</math>}} | ||
- | + | which we solve by taking roots | |
- | *<math>x+1 =\sqrt{9} = 3\,</math> | + | *<math>x+1 =\sqrt{9} = 3\,</math> and hence <math>x=-1+3=2</math>, |
- | *<math>x+1 =-\sqrt{9} = -3\,</math> | + | *<math>x+1 =-\sqrt{9} = -3\,</math> and hence <math>x=-1-3=-4</math>.</li> |
- | <li> | + | <li> Solve the equation <math>\ 2x^2 -2x - \frac{3}{2} = 0</math>. <br><br> |
- | + | Divide both sides by 2 | |
{{Fristående formel||<math>x^2-x-\textstyle\frac{3}{4}=0\mbox{.}</math>}} | {{Fristående formel||<math>x^2-x-\textstyle\frac{3}{4}=0\mbox{.}</math>}} | ||
- | + | Complete the square of the left-hand side (use <math>a=-\tfrac{1}{2}</math>) | |
{{Fristående formel||<math>\textstyle\underline{\vphantom{\bigl(\frac{3}{4}}x^2-x} -\frac{3}{4} = \underline{\bigl(x-\frac{1}{2}\bigr)^2 - \bigl(-\frac{1}{2}\bigr)^2} -\frac{3}{4}= \bigl(x-\frac{1}{2}\bigr)^2 -1</math>}} | {{Fristående formel||<math>\textstyle\underline{\vphantom{\bigl(\frac{3}{4}}x^2-x} -\frac{3}{4} = \underline{\bigl(x-\frac{1}{2}\bigr)^2 - \bigl(-\frac{1}{2}\bigr)^2} -\frac{3}{4}= \bigl(x-\frac{1}{2}\bigr)^2 -1</math>}} | ||
- | + | and this gives us the equation | |
{{Fristående formel||<math>\textstyle\bigl(x-\frac{1}{2}\bigr)^2 - 1=0\mbox{.}</math>}} | {{Fristående formel||<math>\textstyle\bigl(x-\frac{1}{2}\bigr)^2 - 1=0\mbox{.}</math>}} | ||
- | + | Taking roots gives | |
*<math>x-\tfrac{1}{2} =\sqrt{1} = 1, \quad</math> dvs. <math>\quad x=\tfrac{1}{2}+1=\tfrac{3}{2}</math>, | *<math>x-\tfrac{1}{2} =\sqrt{1} = 1, \quad</math> dvs. <math>\quad x=\tfrac{1}{2}+1=\tfrac{3}{2}</math>, | ||
*<math>x-\tfrac{1}{2}= -\sqrt{1} = -1, \quad</math> dvs. <math>\quad x=\tfrac{1}{2}-1= -\tfrac{1}{2}</math>.</li> | *<math>x-\tfrac{1}{2}= -\sqrt{1} = -1, \quad</math> dvs. <math>\quad x=\tfrac{1}{2}-1= -\tfrac{1}{2}</math>.</li> | ||
Zeile 105: | Zeile 105: | ||
<div class="tips"> | <div class="tips"> | ||
- | ''' | + | '''Hint: ''' |
- | + | Keep in mind that we can always test solutions to an equation by inserting the value in the equation and see if the equation is satisfied. We should always do this to check for any careless mistakes. For example, in 3a above, we have two cases to consider. We call the left- and right-hand sides for LH and RH respectively: | |
- | * <math>x = 2</math> | + | * <math>x = 2</math> gives att <math>\mbox{LH } = 2^2 +2\cdot 2 - 8 = 4+4-8 = 0 = \mbox{RH}</math>. |
- | * <math>x = -4</math> | + | * <math>x = -4</math> gives att <math>\mbox{LH } = (-4)^2 + 2\cdot(-4) -8 = 16-8-8 = 0 = \mbox{RH}</math>. |
- | + | In both cases we arrive at LH = RH. The equation is satisfied in both cases. | |
</div> | </div> | ||
- | + | Using the completing the square method it is possible to show that the general quadratic equation | |
{{Fristående formel||<math>x^2+px+q=0</math>}} | {{Fristående formel||<math>x^2+px+q=0</math>}} | ||
- | + | has the solutions | |
{{Fristående formel||<math>x = - \displaystyle\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q}</math>}} | {{Fristående formel||<math>x = - \displaystyle\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q}</math>}} | ||
- | + | provided that the term inside the root sign is not negative. | |
- | + | Sometimes one can factorise the equations directly and thus immediately see what the solutions are. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li>Solve the equation <math>\ x^2-4x=0</math>. <br><br> |
- | + | On the left-hand side, we can factorise out an <math>x</math> | |
:<math>x(x-4)=0</math>. | :<math>x(x-4)=0</math>. | ||
- | + | The equations left-hand side is zero when one of its factors is zero, which gives us two solutions | |
- | *<math>x =0,\quad</math> | + | *<math>x =0,\quad</math> or |
- | *<math>x-4=0\quad</math> | + | *<math>x-4=0\quad</math> or. <math>\quad x=4</math>.</li> |
</ol> | </ol> | ||
</div> | </div> | ||
- | == | + | == Parabolas == |
- | + | Functions | |
{{Fristående formel||<math>\eqalign{y&=x^2-2x+5\cr y&=4-3x^2\cr y&=\textstyle\frac{1}{5}x^2 +3x}</math>}} | {{Fristående formel||<math>\eqalign{y&=x^2-2x+5\cr y&=4-3x^2\cr y&=\textstyle\frac{1}{5}x^2 +3x}</math>}} | ||
- | + | are examples of functions of the second degree. In general, a function of the second degree can be written as | |
{{Fristående formel||<math>y=ax^2+bx+c</math>}} | {{Fristående formel||<math>y=ax^2+bx+c</math>}} | ||
- | + | where <math>a</math>, <math>b</math> and <math>c</math> are constants, and where <math>a\ne0</math>. | |
- | + | The graph for a functions of the second degree is known as a parabola and the figures show the graphs of two typical parabolas <math>y=x^2</math> and <math>y=-x^2</math>. | |
<center>{{:2.3 - Figur - Parablerna y = x² och y = -x²}}</center> | <center>{{:2.3 - Figur - Parablerna y = x² och y = -x²}}</center> | ||
- | <center><small> | + | <center><small>The figure on the left shows the parabola <math>y=x^2</math> and figure to the right the parabola <math>y=-x^2</math>.</small></center> |
- | + | As the expression <math>x^2</math> is minimum when <math>x=0</math> the parabola <math>y=x^2</math> has a minimum when <math>x=0</math> and the parabola <math>y=-x^2</math> has a maximum when <math>x=0</math>. | |
- | + | Note also that parabolas above are symmetrical about the <math>y</math>-axis, as the value of <math>x^2</math>does not depend on the sign of <math>x</math>. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
{| width="100%" | {| width="100%" | ||
||<ol type="a"> | ||<ol type="a"> | ||
- | <li> | + | <li>Sketch the parabola <math>\ y=x^2-2</math>. <br><br> |
- | + | Compared to parabola <math>y=x^2</math> all points on the parabola (<math>y=x^2-2</math>) have <math>y</math>-values that are two units smaller, so the parabola has been displaced downwards two units along the <math>y</math>-direction.</li> | |
</ol> | </ol> | ||
|align="right"|{{:2.3 - Figur - Parabeln y = x² - 2}} | |align="right"|{{:2.3 - Figur - Parabeln y = x² - 2}} | ||
Zeile 169: | Zeile 169: | ||
{| width="100%" | {| width="100%" | ||
||<ol type="a" start=2> | ||<ol type="a" start=2> | ||
- | <li> | + | <li> Sketch the parabola <math>\ y=(x-2)^2</math>. <br><br> |
- | + | For the parabola <math>y=(x-2)^2</math> we need to choose <math>x</math>-values two units larger than for the parabola <math>y=x^2</math> to get the corresponding <math>y</math> values. So the parabola <math>y=(x-2)^2</math> has been displaced two units to the right, compared to <math>y=x^2</math>.</li> | |
</ol> | </ol> | ||
|align="right"|{{:2.3 - Figur - Parabeln y = (x - 2)²}} | |align="right"|{{:2.3 - Figur - Parabeln y = (x - 2)²}} | ||
Zeile 177: | Zeile 177: | ||
{| width="100%" | {| width="100%" | ||
||<ol type="a" start=3> | ||<ol type="a" start=3> | ||
- | <li> | + | <li> Sketch the parabola <math>\ y=2x^2</math>. <br><br> |
- | + | Each point on the parabola <math>y=2x^2</math> has twice a large <math>y</math>-value than the corresponding point with the same <math>x</math>-value on parabola <math>y=x^2</math>. Thus parabola <math>y=2x^2</math> has been increased by a factor <math>2</math> in the <math>y</math>-direction as compared to <math>y=x^2</math>. | |
</ol> | </ol> | ||
|align="right"|{{:2.3 - Figur - Parabeln y = 2x²}} | |align="right"|{{:2.3 - Figur - Parabeln y = 2x²}} | ||
Zeile 184: | Zeile 184: | ||
</div> | </div> | ||
- | + | All sorts of parabolas can be handled by the completing the square method. | |
<div class="exempel"> | <div class="exempel"> | ||
Zeile 190: | Zeile 190: | ||
{| width="100%" | {| width="100%" | ||
- | || | + | ||Sketch the parabola <math>\ y=x^2+2x+2</math>. |
- | + | If one completes the square for the right-hand side | |
{{Fristående formel||<math>x^2 +2x+2 = (x+1)^2 -1^2 +2 = (x+1)^2+1</math>}} | {{Fristående formel||<math>x^2 +2x+2 = (x+1)^2 -1^2 +2 = (x+1)^2+1</math>}} | ||
- | + | we see from the resulting expression <math>y= (x+1)^2+1</math> that the parabola has been displaced one unit to the left along the <math>x</math>-direction, compared to <math>y=x^2</math> (as it stands <math>(x+1)^2</math> instead of <math>x^2</math>) and one unit upwards along the <math>y</math>-direction | |
||{{:2.3 - Figur - Parabeln y = x² + 2x + 2}} | ||{{:2.3 - Figur - Parabeln y = x² + 2x + 2}} | ||
|} | |} | ||
Zeile 201: | Zeile 201: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
- | + | Determine where the parabola <math>\,y=x^2-4x+3\,</math> cuts <math>x</math>--axis. | |
- | + | A point is on the <math>x</math>-axis if its <math>y</math>-coordinate is zero, and the points on the parabola which have <math>y=0</math> have an <math>x</math>-coordinate that satisfies the equation | |
{{Fristående formel||<math>x^2-4x+3=0\mbox{.}</math>}} | {{Fristående formel||<math>x^2-4x+3=0\mbox{.}</math>}} | ||
- | + | Complete the square for the left-hand side, | |
{{Fristående formel||<math>x^2-4x+3=(x-2)^2-2^2+3=(x-2)^2-1</math>}} | {{Fristående formel||<math>x^2-4x+3=(x-2)^2-2^2+3=(x-2)^2-1</math>}} | ||
- | + | and this gives the equation | |
{{Fristående formel||<math>(x-2)^2= 1 \; \mbox{.}</math>}} | {{Fristående formel||<math>(x-2)^2= 1 \; \mbox{.}</math>}} | ||
- | + | After taking roots we get solutions | |
*<math>x-2 =\sqrt{1} = 1,\quad</math> dvs. <math>\quad x=2+1=3</math>, | *<math>x-2 =\sqrt{1} = 1,\quad</math> dvs. <math>\quad x=2+1=3</math>, | ||
*<math>x-2 = -\sqrt{1} = -1,\quad</math> dvs. <math>\quad x=2-1=1</math>. | *<math>x-2 = -\sqrt{1} = -1,\quad</math> dvs. <math>\quad x=2-1=1</math>. | ||
- | + | The parabola cuts the <math>x</math>-axis in points <math>(1,0)</math> and <math>(3,0)</math>. | |
<center>{{:2.3 - Figur - Parabeln y = x² - 4x + 3}}</center> | <center>{{:2.3 - Figur - Parabeln y = x² - 4x + 3}}</center> | ||
Zeile 223: | Zeile 223: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
- | + | Determine the minimum value of the expression <math>\,x^2+8x+19\,</math> antar. | |
- | + | We completes the square | |
{{Fristående formel||<math>x^2 +8x+19=(x+4)^2 -4^2 +19 = (x+4)^2 +3</math>}} | {{Fristående formel||<math>x^2 +8x+19=(x+4)^2 -4^2 +19 = (x+4)^2 +3</math>}} | ||
- | + | and then we see that the term must be at least equal to 3 because the square <math>(x+4)^2</math> is always greater than or equal to 0 regardless of what <math>x</math> is. | |
- | + | In the figure below, we see that the whole parabola <math>y=x^2+8x+19</math> lies above the <math>x</math--axis and has a minimum 3 at <math>x=-4</math>. | |
<center>{{:2.3 - Figur - Parabeln y = x² + 8x + 19}}</center> | <center>{{:2.3 - Figur - Parabeln y = x² + 8x + 19}}</center> | ||
Zeile 238: | Zeile 238: | ||
- | [[2.3 Övningar| | + | [[2.3 Övningar|Exercises]] |
<div class="inforuta" style="width:580px;"> | <div class="inforuta" style="width:580px;"> | ||
- | ''' | + | '''Study advice''' |
- | ''' | + | '''Basic and final tests''' |
- | + | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | |
- | ''' | + | '''Keep in mind that: ''' |
- | + | Devote much time to doing algebra! Algebra is mathematic' s alphabet. Once you understand algebra, your will enhance your understanding of statistics, areas, volumes and geometry. | |
- | ''' | + | '''Reviews''' |
- | + | For those of you who want to deepen your studies or need more detailed explanations consider the following references | |
- | [http://en.wikipedia.org/wiki/Quadratic_equation | + | [http://en.wikipedia.org/wiki/Quadratic_equation Learn more about quadratic equations in the English Wikipedia ] |
- | [http://mathworld.wolfram.com/QuadraticEquation.html | + | [http://mathworld.wolfram.com/QuadraticEquation.html Learn more about quadratic equations in mathworld ] |
[http://plus.maths.org/issue29/features/quadratic/index-gifd.html 101 uses of a quadratic equation - by Chris Budd and Chris Sangwin] | [http://plus.maths.org/issue29/features/quadratic/index-gifd.html 101 uses of a quadratic equation - by Chris Budd and Chris Sangwin] |
Version vom 13:26, 12. Jul. 2008
Content:
- Completing the square method
- Quadratic equations
- Faktorising
- Parabolas
Learning outcomes:
After this section, you will have learned to:
- Complete the square for expressions of degree two (second degree).
- Solve quadratic equations by completing the square (not using a standard formula) and know how to check the answer.
- Factorise expressions of the second degree. (when possible).
- Directly solve factorised or almost factorised quadratic equations.
- Determine the minimum / maximum value of an expression of degree two.
- Sketch parabolas by completing the square method.
quadratic equations
A quadratic equation is one that can be written as Vorlage:Fristående formel where \displaystyle x is the unknown and \displaystyle p and \displaystyle q are constants.
Simpler forms of quadratic equations can be solved directly by taking roots.
The equation \displaystyle x^2=a where \displaystyle a is a positive number has two solutions (roots) \displaystyle x=\sqrt{a} and \displaystyle x=-\sqrt{a}.
Example 1
- \displaystyle x^2 = 4 \quad has the roots \displaystyle x=\sqrt{4} = 2 and \displaystyle x=-\sqrt{4}= -2.
- \displaystyle 2x^2=18 \quad is rewritten as \displaystyle x^2=9 , and has the roots \displaystyle x=\sqrt9 = 3 and \displaystyle x=-\sqrt9 = -3.
- \displaystyle 3x^2-15=0 \quad can be rewritten as \displaystyle x^2=5 and has the roots \displaystyle x=\sqrt5 \approx 2{,}236 and \displaystyle x=-\sqrt5 \approx -2{,}236.
- \displaystyle 9x^2+25=0\quad has no solutions because the left-hand side will always be greater than or equal to 25 regardless of the value of \displaystyle x (the square \displaystyle x^2 is always greater than or equal to zero).
Example 2
- Solve the equation \displaystyle \ (x-1)^2 = 16.
By considering \displaystyle x-1 as the unknown and taking the roots one finds the equation has two solutions- \displaystyle x-1 =\sqrt{16} = 4\, which gives that \displaystyle x=1+4=5,
- \displaystyle x-1 = -\sqrt{16} = -4\, which gives that \displaystyle x=1-4=-3.
- Solve the equation \displaystyle \ 2(x+1)^2 -8=0.
Move the term \displaystyle 8 over to the right-hand side and divide both sides by \displaystyle 2, Vorlage:Fristående formel Taking the roots gives:- \displaystyle x+1 =\sqrt{4} = 2, \quad \mbox{dvs.} \quad x=-1+2=1\,\mbox{,}
- \displaystyle x+1 = -\sqrt{4} = -2, \quad \mbox{dvs.} \quad x=-1-2=-3\,\mbox{.}
To solve a quadratic equation generally, we use a technique called completing the square.
If we consider the rule for expanding a quadratic, Vorlage:Fristående formel and subtract the \displaystyle a^2 from both sides we get
Kvadratkomplettering: Vorlage:Fristående formel
Example 3
- Solve the equation \displaystyle \ x^2 +2x -8=0.
One completes the square for \displaystyle x^2+2x (use \displaystyle a=1 in the formula) Vorlage:Fristående formel where the underlined terms are those involved in the completion of the square. Thus the equation can be written as Vorlage:Fristående formel which we solve by taking roots- \displaystyle x+1 =\sqrt{9} = 3\, and hence \displaystyle x=-1+3=2,
- \displaystyle x+1 =-\sqrt{9} = -3\, and hence \displaystyle x=-1-3=-4.
- Solve the equation \displaystyle \ 2x^2 -2x - \frac{3}{2} = 0.
Divide both sides by 2 Vorlage:Fristående formel Complete the square of the left-hand side (use \displaystyle a=-\tfrac{1}{2}) Vorlage:Fristående formel and this gives us the equation Vorlage:Fristående formel Taking roots gives- \displaystyle x-\tfrac{1}{2} =\sqrt{1} = 1, \quad dvs. \displaystyle \quad x=\tfrac{1}{2}+1=\tfrac{3}{2},
- \displaystyle x-\tfrac{1}{2}= -\sqrt{1} = -1, \quad dvs. \displaystyle \quad x=\tfrac{1}{2}-1= -\tfrac{1}{2}.
Hint:
Keep in mind that we can always test solutions to an equation by inserting the value in the equation and see if the equation is satisfied. We should always do this to check for any careless mistakes. For example, in 3a above, we have two cases to consider. We call the left- and right-hand sides for LH and RH respectively:
- \displaystyle x = 2 gives att \displaystyle \mbox{LH } = 2^2 +2\cdot 2 - 8 = 4+4-8 = 0 = \mbox{RH}.
- \displaystyle x = -4 gives att \displaystyle \mbox{LH } = (-4)^2 + 2\cdot(-4) -8 = 16-8-8 = 0 = \mbox{RH}.
In both cases we arrive at LH = RH. The equation is satisfied in both cases.
Using the completing the square method it is possible to show that the general quadratic equation Vorlage:Fristående formel has the solutions Vorlage:Fristående formel provided that the term inside the root sign is not negative.
Sometimes one can factorise the equations directly and thus immediately see what the solutions are.
Example 4
- Solve the equation \displaystyle \ x^2-4x=0.
On the left-hand side, we can factorise out an \displaystyle x- \displaystyle x(x-4)=0.
- \displaystyle x =0,\quad or
- \displaystyle x-4=0\quad or. \displaystyle \quad x=4.
Parabolas
Functions Vorlage:Fristående formel are examples of functions of the second degree. In general, a function of the second degree can be written as Vorlage:Fristående formel where \displaystyle a, \displaystyle b and \displaystyle c are constants, and where \displaystyle a\ne0.
The graph for a functions of the second degree is known as a parabola and the figures show the graphs of two typical parabolas \displaystyle y=x^2 and \displaystyle y=-x^2.
As the expression \displaystyle x^2 is minimum when \displaystyle x=0 the parabola \displaystyle y=x^2 has a minimum when \displaystyle x=0 and the parabola \displaystyle y=-x^2 has a maximum when \displaystyle x=0.
Note also that parabolas above are symmetrical about the \displaystyle y-axis, as the value of \displaystyle x^2does not depend on the sign of \displaystyle x.
Example 5
| 2.3 - Figur - Parabeln y = x² - 2 |
| 2.3 - Figur - Parabeln y = (x - 2)² |
| 2.3 - Figur - Parabeln y = 2x² |
All sorts of parabolas can be handled by the completing the square method.
Exempel 6
Sketch the parabola \displaystyle \ y=x^2+2x+2.
| 2.3 - Figur - Parabeln y = x² + 2x + 2 |
Example 7
Determine where the parabola \displaystyle \,y=x^2-4x+3\, cuts \displaystyle x--axis.
A point is on the \displaystyle x-axis if its \displaystyle y-coordinate is zero, and the points on the parabola which have \displaystyle y=0 have an \displaystyle x-coordinate that satisfies the equation
Vorlage:Fristående formel
Complete the square for the left-hand side,
Vorlage:Fristående formel
and this gives the equation
Vorlage:Fristående formel
After taking roots we get solutions
- \displaystyle x-2 =\sqrt{1} = 1,\quad dvs. \displaystyle \quad x=2+1=3,
- \displaystyle x-2 = -\sqrt{1} = -1,\quad dvs. \displaystyle \quad x=2-1=1.
The parabola cuts the \displaystyle x-axis in points \displaystyle (1,0) and \displaystyle (3,0).
Example 8
Determine the minimum value of the expression \displaystyle \,x^2+8x+19\, antar.
We completes the square
Vorlage:Fristående formel
and then we see that the term must be at least equal to 3 because the square \displaystyle (x+4)^2 is always greater than or equal to 0 regardless of what \displaystyle x is.
In the figure below, we see that the whole parabola \displaystyle y=x^2+8x+19 lies above the \displaystyle xx=-4.
Study advice
Basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that:
Devote much time to doing algebra! Algebra is mathematic' s alphabet. Once you understand algebra, your will enhance your understanding of statistics, areas, volumes and geometry.
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references
Learn more about quadratic equations in the English Wikipedia
Learn more about quadratic equations in mathworld
101 uses of a quadratic equation - by Chris Budd and Chris Sangwin
Länktips