2. Algebra

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: __NOTOC__ <!-- Don't remove this line --> <!-- A hack to get a popup-window --> {|align="left" | width="220" height="203" |<math>\text{@(a class="image" href="http://smaug.nti.se/temp/KT...)
Zeile 9: Zeile 9:
|}
|}
-
'''Varför räknar vi med bokstäver och vem kom på detta?'''
+
'''Why do we use letters letters and who were the first to do this? '''
-
''Titta på videon där universitetslektor Lasse Svensson berättar om hur algebran utvecklats och svarar på Elins frågor om Del 2 i kursen.''
+
''Watch the video in which the lecturer Lasse Svensson tells us how algebra
 +
developed and answers Elins questions about Part 2 of the course.
Zeile 23: Zeile 24:
-
Algebra är den gren av matematiken som behandlar räkning med symboliska uttryck och variabler och inte bara räkning med tal.
+
Algebra is the branch of mathematics which works with symbolic expressions and variables, and not just calculations with numbers.
-
Algebra behövs i många situationer, t.ex. kan algebra användas till att beskriva matematiska problem och till att lösa ekvationer. Det går bland annat att beskriva geometriska fakta med hjälp av algebraiska påståenden, och många problem går att lösa med hjälp av algebraiska operationer.
+
Algebra is needed in many situations. For example algebra can be used to describe mathematical problems and to solve equations. Among other things it can describe geometric facts by means of algebraic statements, and many problems can be resolved with the help of algebraic operations.
 +
In some cases the value of an expression does not simplify to a numeric value. The reason may be that the expression includes unknown parameters or variables. It may also be that it is important that a number be exactly specified, such as that given circle is to have a circumference of exactly <math>4\pi</math> units, or the hypotenuse of a triangle is to b e<math>\sqrt{3}</math>, or even that the value of a constant is to be <math>\dfrac{1-\ln 2}{3}</math>.
-
I en del fall kan man inte räkna ut värdet av ett uttryck till ett numeriskt värde. Anledningen kan vara att uttrycket innehåller obekanta parametrar eller variabler. Det kan också vara så att det är viktigt att ett tal är exakt angivet, t.ex. att en viss cirkel har en omkrets som är exakt <math>4\pi</math>, eller hypotenusans längd för en triangel är <math>\sqrt{3}</math>, eller varför inte att värdet på en konstant är <math>\dfrac{1-\ln 2}{3}</math>.
 
 +
[[Bild:grafisk lösning.gif|thumb|250px|A linear equation with two unknowns can be interpreted as a straight line in a coordinate system. The common solution (''x'',''y'') to these two equations corresponds to the common point of these lines, that is their point of intersection. ]]
 +
Then it may be easier just to call the number, for example, ''a''. In return, you must accept that you may not arrive at a numerical value, but instead may finish up with an expression that contains ''a''.
-
[[Bild:grafisk lösning.gif|thumb|250px|En linjär ekvation med två obekanta kan ses som en linje i ett koordinatsystem. Den gemensamma lösningen (''x'',''y'') till dessa ekvationer motsvaras då av den gemensamma punkten för dessa linjer, dvs. skärningspunkten.]]
+
A common situation where it algebra may be necessary is simplification. It is often very important to simplify an expression, such as before differentiation, or when an equation is to be solved.
-
Då kan det vara enklast att i uträkningarna kalla talet för exempelvis ''a''. Som svar kan man också acceptera att man inte kommer fram till ett numeriskt värde, utan i stället får ett uttryck som innehåller ''a''.
+
-
En vanlig situation där man kan behöva algebra är förenkling. Det är ofta mycket viktigt att förenkla ett uttryck, t.ex. innan man skall derivera, eller när man löser en ekvation.
 
 +
Simplification reduces the risk of careless mistakes and avoids unnecessary work. To simplify means to transform an expression from one form to another. Which of these are considered as &rdquo;simple&rdquo;is sometimes obvious, but it can also depend on what you want to do with the expression.
-
Genom att förenkla minskar man risken för slarvfel och man slipper onödigt arbete. Att förenkla innebär att skriva om ett uttryck från en form till en annan. Vilken form som betraktas som &rdquo;enkel&rdquo; är ibland uppenbart, men det kan också bero på vad man vill göra med uttrycket.
+
When differentiating, it may be advantageous to transform the expression into a sum of a number of terms. On the other hand when we solve an equation, it may be advantageous to reformulate the expression as a product of a number of factors. Therefore, one needs to be proficient in converting expressions into different forms.
-
När man deriverar kan det vara fördelaktigt att formulera uttrycket som en summa av ett antal termer. När man löser en ekvation kan det vara fördelaktigt att formulera det som en produkt av ett antal faktorer. Därför behöver man kunna omvandla uttryck mellan olika former.
+
'''It is important to note that the material in this section&mdash; as well as in other parts of the course &mdash; is designed that one does not use calculators.'''
-
 
+
''When you get to university, you will not be allowed to use calculators during your "exams" at least this is true for the basic courses.''
-
'''Observera att materialet i denna kursdel &mdash; liksom i övriga delar av kursen &mdash; är utformat för att man ska arbeta med det utan hjälp av miniräknare.'''
+
-
 
+
-
''När du kommer till högskolan kommer du nämligen inte att få använda miniräknare på dina "tentor", åtminstone inte på grundkurserna.''
+
<div class="inforuta">
<div class="inforuta">
-
'''Så här lyckas du med Algebran'''
+
'''To succeed you with Algebra'''
-
#Börja med att läsa genomgången till ett avsnitt och tänka igenom exemplen.
+
# Start by reading the section's theory and study the examples.
-
#Arbeta sedan med övningsuppgifterna och försök att lösa dem utan miniräknare. Kontrollera att du kommit fram till rätt svar genom att klicka på svarsknappen. Har du inte det, så kan du klicka på lösningsknappen, för att se hur du ska göra.
+
#Work through the practice questions and try to solve them without using a calculator. Make sure that you have the right answer by clicking on the answer button. If you do not have it, you can click on the solution button to see what went wrong
-
#Gå därefter vidare och svara på frågorna i grundprovet som hör till avsnittet.
+
#Then go ahead and answer the questions in the basic test of the section.
-
# Skulle du fastna, se efter om någon ställt en fråga om just detta i avsnittets forum. Ställ annars en fråga om du undrar över något. Din lärare (eller en studiekamrat) kommer att besvara den inom några timmar.
+
# If you get stuck on a point, check to see if someone else has discussed the point in the forum belonging to the section. If not, take up the point yourself. Your teacher (or a student) will respond to your question within a few hours.
-
#När du är klar med övningsuppgifterna och grundproven i ett avsnitt så ska du göra slutprovet för att bli godkänd på avsnittet. Där gäller det att svara rätt på tre frågor i följd för att kunna gå vidare.
+
#When you are finished with the exercises and the basic test in a section you should take the final test to get a pass for the section. The requirement here is to answer correctly three questions in a row before you can move on to the next section.
-
#När du fått alla rätt på både grundprov och slutprov, så är du godkänd på den delen och kan gå vidare till Del 3 i kursen.
+
# When you have answered correctly all questions in both the basic and the final test of this section you will have a pass for this section and can move on to Part 3 of the course.
-
&nbsp;&nbsp;&nbsp;PS. Tycker du att innehållet i ett avsnitt känns väldigt bekant, så kan du testa att gå direkt till grundprovet och slutprovet. Du måste få alla rätt på ett prov, men kan göra om provet flera gånger, om du inte lyckas på första försöket. Det är ditt senaste resultat som visas i statistiken.
+
&nbsp;&nbsp;&nbsp;PS. If you feel that you are very familiar with the contents of a section you can test yourself by going directly to the basic and final tests. You must answer all the questions correctly in a test, but you may do the test several times if you do not succeed at the first attempt. It is your final results which appear in the statistics.
</div>
</div>

Version vom 13:48, 10. Jul. 2008



\displaystyle \text{@(a class="image" href="http://smaug.nti.se/temp/KTH/film4.html" target="_blank")@(img src="http://wiki.math.se/wikis/2008/forberedandematte1/img_auth.php/0/00/Lars_och_Elin.jpg" alt="Film om algebra")@(/img)@(/a)}

Why do we use letters letters and who were the first to do this?


Watch the video in which the lecturer Lasse Svensson tells us how algebra developed and answers Elins questions about Part 2 of the course.






Algebra is the branch of mathematics which works with symbolic expressions and variables, and not just calculations with numbers.


Algebra is needed in many situations. For example algebra can be used to describe mathematical problems and to solve equations. Among other things it can describe geometric facts by means of algebraic statements, and many problems can be resolved with the help of algebraic operations.

In some cases the value of an expression does not simplify to a numeric value. The reason may be that the expression includes unknown parameters or variables. It may also be that it is important that a number be exactly specified, such as that given circle is to have a circumference of exactly \displaystyle 4\pi units, or the hypotenuse of a triangle is to b e\displaystyle \sqrt{3}, or even that the value of a constant is to be \displaystyle \dfrac{1-\ln 2}{3}.


A linear equation with two unknowns can be interpreted as a straight line in a coordinate system. The common solution (x,y) to these two  equations corresponds to the common point of these lines, that is their point of intersection.
A linear equation with two unknowns can be interpreted as a straight line in a coordinate system. The common solution (x,y) to these two equations corresponds to the common point of these lines, that is their point of intersection.

Then it may be easier just to call the number, for example, a. In return, you must accept that you may not arrive at a numerical value, but instead may finish up with an expression that contains a.

A common situation where it algebra may be necessary is simplification. It is often very important to simplify an expression, such as before differentiation, or when an equation is to be solved.


Simplification reduces the risk of careless mistakes and avoids unnecessary work. To simplify means to transform an expression from one form to another. Which of these are considered as ”simple”is sometimes obvious, but it can also depend on what you want to do with the expression.

When differentiating, it may be advantageous to transform the expression into a sum of a number of terms. On the other hand when we solve an equation, it may be advantageous to reformulate the expression as a product of a number of factors. Therefore, one needs to be proficient in converting expressions into different forms.


It is important to note that the material in this section— as well as in other parts of the course — is designed that one does not use calculators.

When you get to university, you will not be allowed to use calculators during your "exams" at least this is true for the basic courses.


To succeed you with Algebra

  1. Start by reading the section's theory and study the examples.
  2. Work through the practice questions and try to solve them without using a calculator. Make sure that you have the right answer by clicking on the answer button. If you do not have it, you can click on the solution button to see what went wrong
  3. Then go ahead and answer the questions in the basic test of the section.
  4. If you get stuck on a point, check to see if someone else has discussed the point in the forum belonging to the section. If not, take up the point yourself. Your teacher (or a student) will respond to your question within a few hours.
  5. When you are finished with the exercises and the basic test in a section you should take the final test to get a pass for the section. The requirement here is to answer correctly three questions in a row before you can move on to the next section.
  6. When you have answered correctly all questions in both the basic and the final test of this section you will have a pass for this section and can move on to Part 3 of the course.

   PS. If you feel that you are very familiar with the contents of a section you can test yourself by going directly to the basic and final tests. You must answer all the questions correctly in a test, but you may do the test several times if you do not succeed at the first attempt. It is your final results which appear in the statistics.