4.4 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
Zeile 24: | Zeile 24: | ||
|width="50%" | <math>\cos{v}=2</math> | |width="50%" | <math>\cos{v}=2</math> | ||
|f) | |f) | ||
- | |width="50%" | <math>\sin{v}=-\displaystyle \frac{1}{2} | + | |width="50%" | <math>\sin{v}=-\displaystyle \frac{1}{2}</math> |
|- | |- | ||
|g) | |g) | ||
Zeile 47: | Zeile 47: | ||
|width="33%" | <math>\sin{5x}=\displaystyle \frac{1}{2}</math> | |width="33%" | <math>\sin{5x}=\displaystyle \frac{1}{2}</math> | ||
|f) | |f) | ||
- | |width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}} | + | |width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math> |
|} | |} | ||
</div>{{#NAVCONTENT:Svar|Svar 4.4:2|Lösning a |Lösning 4.4:2a|Lösning b |Lösning 4.4:2b|Lösning c |Lösning 4.4:2c|Lösning d |Lösning 4.4:2d|Lösning e |Lösning 4.4:2e|Lösning f |Lösning 4.4:2f}} | </div>{{#NAVCONTENT:Svar|Svar 4.4:2|Lösning a |Lösning 4.4:2a|Lösning b |Lösning 4.4:2b|Lösning c |Lösning 4.4:2c|Lösning d |Lösning 4.4:2d|Lösning e |Lösning 4.4:2e|Lösning f |Lösning 4.4:2f}} | ||
Zeile 66: | Zeile 66: | ||
|} | |} | ||
</div>{{#NAVCONTENT:Svar|Svar 4.4:3|Lösning a |Lösning 4.4:3a|Lösning b |Lösning 4.4:3b|Lösning c |Lösning 4.4:3c|Lösning d |Lösning 4.4:3d}} | </div>{{#NAVCONTENT:Svar|Svar 4.4:3|Lösning a |Lösning 4.4:3a|Lösning b |Lösning 4.4:3b|Lösning c |Lösning 4.4:3c|Lösning d |Lösning 4.4:3d}} | ||
+ | |||
+ | ===Övning 4.4:4=== | ||
+ | <div class="ovning"> | ||
+ | Bestäm de vinklar <math>\,v\,</math> i intervallet <math>\,0^\circ \leq v \leq 360^\circ\,</math> som uppfyller <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>. | ||
+ | |||
+ | </div>{{#NAVCONTENT:Svar|Svar 4.4:4|Lösning |Lösning 4.4:4}} |
Version vom 11:44, 3. Apr. 2008
Övning 4.4:1
För vilka vinklar \displaystyle \,v\,, där \displaystyle \,0 \leq v\leq 2\pi\,, gäller att
a) | \displaystyle \sin{v}=\displaystyle \frac{1}{2} | b) | \displaystyle \cos{v}=\displaystyle \frac{1}{2} |
c) | \displaystyle \sin{v}=1 | d) | \displaystyle \tan{v}=1 |
e) | \displaystyle \cos{v}=2 | f) | \displaystyle \sin{v}=-\displaystyle \frac{1}{2} |
g) | \displaystyle \tan{v}=-\displaystyle \frac{1}{\sqrt{3}} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Lösning g
Övning 4.4:2
Lös ekvationen
a) | \displaystyle \sin{x}=\displaystyle \frac{\sqrt{3}}{2} | b) | \displaystyle \cos{x}=\displaystyle \frac{1}{2} | c) | \displaystyle \sin{x}=0 |
d) | \displaystyle \sin{5x}=\displaystyle \frac{1}{\sqrt{2}} | e) | \displaystyle \sin{5x}=\displaystyle \frac{1}{2} | f) | \displaystyle \cos{3x}=-\displaystyle\frac{1}{\sqrt{2}} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Övning 4.4:3
Lös ekvationen
a) | \displaystyle \cos{x}=\cos{\displaystyle \frac{\pi}{6}} | b) | \displaystyle \sin{x}=\sin{\displaystyle \frac{\pi}{5}} |
c) | \displaystyle \sin{(x+40^\circ)}=\sin{65^\circ} | d) | \displaystyle \sin{3x}=\sin{15^\circ} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Övning 4.4:4
Bestäm de vinklar \displaystyle \,v\, i intervallet \displaystyle \,0^\circ \leq v \leq 360^\circ\, som uppfyller \displaystyle \ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,.
Svar
Lösning