4.3 Trigonometrische Eigenschaften
Aus Online Mathematik Brückenkurs 1
(Fixed untranslated tab link (from english to german title)) |
|||
Zeile 22: | Zeile 22: | ||
}} | }} | ||
- | == Einführung == | + | == A - Einführung == |
Es gibt viele trigonometrische Formeln, um verschiedene trigonometrische Ausdrücke umzuwandeln. Diese Formeln nennt man meist die trigonometrischen Identitäten. Wir werden hier einige trigonometrische Identitäten zeigen, aber es gibt noch viele mehr. Die meisten können durch die Doppelwinkelfunktionen und durch den trigonometrischen Pythagoras hergeleitet werden, die deshalb zentrale Identitäten sind. | Es gibt viele trigonometrische Formeln, um verschiedene trigonometrische Ausdrücke umzuwandeln. Diese Formeln nennt man meist die trigonometrischen Identitäten. Wir werden hier einige trigonometrische Identitäten zeigen, aber es gibt noch viele mehr. Die meisten können durch die Doppelwinkelfunktionen und durch den trigonometrischen Pythagoras hergeleitet werden, die deshalb zentrale Identitäten sind. | ||
- | == Der trigonometrische Pythagoras == | + | == B - Der trigonometrische Pythagoras == |
{| width="100%" | {| width="100%" | ||
Zeile 39: | Zeile 39: | ||
- | == Symmetrien == | + | == C - Symmetrien == |
Mit Spiegelungen im Einheitskreis kann man viele Symmetrien der trigonometrischen Funktionen zeigen. | Mit Spiegelungen im Einheitskreis kann man viele Symmetrien der trigonometrischen Funktionen zeigen. | ||
Zeile 143: | Zeile 143: | ||
- | == Die Additionstheoreme, die Doppelwinkelfunktionen und die Halbwinkelformeln == | + | == D - Die Additionstheoreme, die Doppelwinkelfunktionen und die Halbwinkelformeln == |
Oft kommen Ausdrücke mit Summen von Winkeln vor, sowie <math>\sin(u+v)</math>. Sehr hilfreich sind bei solchen Ausdrücken die Additionstheoreme. Für Sinus und Cosinus lauten die Additionstheoreme | Oft kommen Ausdrücke mit Summen von Winkeln vor, sowie <math>\sin(u+v)</math>. Sehr hilfreich sind bei solchen Ausdrücken die Additionstheoreme. Für Sinus und Cosinus lauten die Additionstheoreme |
Version vom 15:04, 14. Aug. 2009
Theorie | Übungen |
Inhalt:
- Der trigonometrische Pythagoras
- Die Doppelwinkelfunktionen und die Halbwinkelformeln
- Die Additionstheoreme
Lernziele:
Nach diesem Abschnitt solltest Du folgendes können:
- Trigonometrische Identitäten durch den Einheitskreis herleiten.
- Trigonometrische Ausdrücke mit den trigonometrischen Identitäten vereinfachen.
A - Einführung
Es gibt viele trigonometrische Formeln, um verschiedene trigonometrische Ausdrücke umzuwandeln. Diese Formeln nennt man meist die trigonometrischen Identitäten. Wir werden hier einige trigonometrische Identitäten zeigen, aber es gibt noch viele mehr. Die meisten können durch die Doppelwinkelfunktionen und durch den trigonometrischen Pythagoras hergeleitet werden, die deshalb zentrale Identitäten sind.
B - Der trigonometrische Pythagoras
Dieses Gesetz ist eigentlich nur ein Sonderfall des Gesetzes von Pythagoras für Dreiecke im Einheitskreis. Durch das rechtwinklige Dreieck im Bild sehen wir, dass
das normalerweise als \displaystyle \sin^2\!v + \cos^2\!v = 1 geschrieben wird. |
|
C - Symmetrien
Mit Spiegelungen im Einheitskreis kann man viele Symmetrien der trigonometrischen Funktionen zeigen.
\displaystyle
\begin{align*} \cos (-v) &= \cos v\vphantom{\Bigl(}\\ \sin (-v) &= - \sin v\vphantom{\Bigl(}\\ \cos (\pi-v) &= - \cos v\vphantom{\Bigl(}\\ \sin (\pi-v) &= \sin v\vphantom{\Bigl(}\\ \end{align*} \qquad\quad \begin{align*} \cos \Bigl(\displaystyle \frac{\pi}{2} -v \Bigr) &= \sin v\\ \sin \Bigl(\displaystyle \frac{\pi}{2} -v \Bigr) &= \cos v\\ \cos \Bigl(v + \displaystyle \frac{\pi}{2} \Bigr) &= - \sin v\\ \sin \Bigl( v + \displaystyle \frac{\pi}{2} \Bigr) &= \cos v\\ \end{align*} |
Wie gesagt kann man diese Symmetrien einfach mit dem Einheitskreis herleiten.
Spiegelung an der x-Achse
|
Die Spiegelung wirkt sich nicht auf die x-Koordinate aus, während die y-Koordinate ihr Vorzeichen tauscht.
|
Spiegelung an der y-Achse
|
Die Spiegelung wirkt sich nicht auf die y-Koordinate aus, während die x-Koordinate ihr Vorzeichen tauscht.
|
Spiegelung an der Geraden y = x
|
|
Drehung um den Winkel \displaystyle \mathbf{\pi/2}
|
Durch die Drehung wird die Koordinate \displaystyle (x,y) zu \displaystyle (-y,x).
|
D - Die Additionstheoreme, die Doppelwinkelfunktionen und die Halbwinkelformeln
Oft kommen Ausdrücke mit Summen von Winkeln vor, sowie \displaystyle \sin(u+v). Sehr hilfreich sind bei solchen Ausdrücken die Additionstheoreme. Für Sinus und Cosinus lauten die Additionstheoreme
\displaystyle \begin{align*}
\sin(u + v) &= \sin u\,\cos v + \cos u\,\sin v\,\mbox{,}\\ \sin(u – v) &= \sin u\,\cos v – \cos u\,\sin v\,\mbox{,}\\ \cos(u + v) &= \cos u\,\cos v – \sin u\,\sin v\,\mbox{,}\\ \cos(u – v) &= \cos u\,\cos v + \sin u\,\sin v\,\mbox{.}\\ \end{align*} |
Um die Doppelwinkelfunktionen \displaystyle \sin 2v und \displaystyle \cos 2v zu erhalten, kann man die Sonderfälle \displaystyle \sin(v + v) und \displaystyle \cos(v + v) der Additionstheoreme betrachten
\displaystyle \begin{align*}
\sin 2v &= 2 \sin v \cos v\,\mbox{,}\\ \cos 2v &= \cos^2\!v – \sin^2\!v \,\mbox{.}\\ \end{align*} |
Indem man in diese Formel \displaystyle 2v mit \displaystyle v ersetzt und natürlich auch \displaystyle v mit \displaystyle v/2, erhält man für \displaystyle \cos 2v
\displaystyle
\cos v = \cos^2\!\frac{v}{2} – \sin^2\!\frac{v}{2}\,\mbox{.} |
Durch den trigonometrischen Pythagoras werden wir den Term \displaystyle \cos^2(v/2) los
\displaystyle
\cos v = 1 – \sin^2\!\frac{v}{2} – \sin^2\!\frac{v}{2} = 1 – 2\sin^2\!\frac{v}{2} |
also
\displaystyle
\sin^2\!\frac{v}{2} = \frac{1 – \cos v}{2}\,\mbox{.} |
Man kann natürlich auch den trigonometrischen Pythagoras verwenden, um den Term \displaystyle \sin^2(v/2) loszuwerden. So erhalten wir statt dessen
\displaystyle
\cos^2\!\frac{v}{2} = \frac{1 + \cos v}{2}\,\mbox{.} |
Tipps fürs Lernen
Diagnostische Prüfung und Schlussprüfung
Nachdem Du mit der Theorie fertig bist, solltest Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die Links zu den Prüfungen in Deiner "Student Lounge".
Bedenken folgendes:
Der Einheitskreis ist ein sehr nützliches Hilfsmittel, um trigonometrische Identitäten herzuleiten. Es gibt sehr viele verschiedene trigonometrische Identitäten, und man kann sie nicht alle auswendig lernen. Deshalb ist es gut, sie herleiten zu können. Der trigonometrische Pythagoras ist zum Beispiel nur ein Sonderfall des Gesetzes von Pythagoras im Einheitskreis.
Nützliche Websites