Lösung 2.3:7b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 10: Zeile 10:
\end{align}</math>}}
\end{align}</math>}}
-
und sehen, dass hier der quadratische Term <math>-(x-\tfrac{3}{2})^{2}</math> immer kleiner als Null ist. Also ist der größte Wert der Ausdruckes <math>-7/4</math>, wenn <math>x-\tfrac{3}{2}=0\</math>, ist also <math>x=\tfrac{3}{2}\,</math>.
+
und sehen, dass hier der quadratische Term <math>-(x-\tfrac{3}{2})^{2}</math> immer kleiner als Null ist. Also ist der größte Wert der Ausdruckes <math>-7/4</math>, wenn <math>x-\tfrac{3}{2}=0\</math> ist also <math>x=\tfrac{3}{2}\,</math>.

Version vom 09:40, 9. Aug. 2009

Wir verwenden die quadratische Ergänzung

\displaystyle \begin{align}

-x^{2}+3x-4 &= -\bigl(x^{2}-3x+4\bigr)\\[5pt] &= -\Bigl(\Bigl(x-\frac{3}{2}\Bigr)^{2}-\Bigl(\frac{3}{2}\Bigr)^{2}+4\Bigr)\\[5pt] &= -\Bigl(\Bigl(x-\frac{3}{2}\Bigr)^{2}-\frac{9}{4}+\frac{16}{4}\Bigr)\\[5pt] &= -\Bigl(\Bigl(x-\frac{3}{2}\Bigr)^{2}+\frac{7}{4}\Bigr)\\[5pt] &= -\Bigl(x-\frac{3}{2}\Bigr)^{2}-\frac{7}{4}\,\textrm{,} \end{align}

und sehen, dass hier der quadratische Term \displaystyle -(x-\tfrac{3}{2})^{2} immer kleiner als Null ist. Also ist der größte Wert der Ausdruckes \displaystyle -7/4, wenn \displaystyle x-\tfrac{3}{2}=0\ ist also \displaystyle x=\tfrac{3}{2}\,.