2.2 Lineare Gleichungen
Aus Online Mathematik Brückenkurs 1
Zeile 150: | Zeile 150: | ||
schreiben kann, wobei <math>k</math> und <math>m</math> Konstanten sind. | schreiben kann, wobei <math>k</math> und <math>m</math> Konstanten sind. | ||
- | Der Funktionsgraph einer linearen Gleichung ist immer eine gerade Linie (auch Gerade genannt). Die Konstante <math>k</math> bestimmt, wie steil die Gerade im Verhältnis zur <math>x</math>-Achse ist | + | Der Funktionsgraph einer linearen Gleichung ist immer eine gerade Linie (auch Gerade genannt). Die Konstante <math>k</math> bestimmt, wie steil die Gerade im Verhältnis zur <math>x</math>-Achse ist und die Konstante <math>m</math> ist der Schnittpunkt von der Gerade mit der <math>y</math>-Achse. |
<center>{{:2.2 - Bild - Die Gerade y = kx + m}}</center> | <center>{{:2.2 - Bild - Die Gerade y = kx + m}}</center> | ||
Zeile 209: | Zeile 209: | ||
{{Abgesetzte Formel||<math>ax+by=c</math>}} | {{Abgesetzte Formel||<math>ax+by=c</math>}} | ||
</div> | </div> | ||
- | geschrieben werden, | + | geschrieben werden, wobei <math>a</math>, <math>b</math> und <math>c</math> Konstanten sind. |
<div class="exempel"> | <div class="exempel"> | ||
Zeile 288: | Zeile 288: | ||
Wir sehen auch, dass alle Punkte oberhalb der Geraden <math>y=-x</math> und <math>y=x</math> liegen müssen. Dies entspricht, dass <math>-y\le x\le y</math>. Nachdem wir Begrenzungen für die <math>y</math>-Koordinate haben, wissen wir auch, dass <math>x</math> kleiner als <math>2</math> sein muss und größer als <math>-2</math>. | Wir sehen auch, dass alle Punkte oberhalb der Geraden <math>y=-x</math> und <math>y=x</math> liegen müssen. Dies entspricht, dass <math>-y\le x\le y</math>. Nachdem wir Begrenzungen für die <math>y</math>-Koordinate haben, wissen wir auch, dass <math>x</math> kleiner als <math>2</math> sein muss und größer als <math>-2</math>. | ||
- | Die Basis des Dreiecks ist <math>4</math> | + | Die Basis des Dreiecks ist <math>4</math> und die Höhe ist <math>2</math>. |
Fie Fläche des Dreiecks ist daher <math> 4\cdot 2/2=4</math>. | Fie Fläche des Dreiecks ist daher <math> 4\cdot 2/2=4</math>. |
Version vom 22:05, 8. Aug. 2009
Theorie | Übungen |
Inhalt:
- Lineare Gleichungen
- Gleichung einer Geraden
- Geometrische Probleme
- Gebiete definiert durch lineare Gleichungen
Lernziele:
Nach diesem Abschnitt solltest Du folgendes können:
- Algebraische Gleichungen, die nach Vereinfachungen lineare Gleichungen ergeben, lösen.
- Gleichungen zwischen den Formen y = kx + m und ax + by + c = 0. umwandeln.
- Geraden, die durch eine lineare Gleichung definiert sind, zeichnen.
- Geometrische Probleme mit linearen Gleichungen lösen.
- Gebiete, die durch lineare Gleichungen definiert sind, zeichnen und die Fläche dieser Gebiete berechnen.
Lineare Gleichungen
Um Lineare Gleichungen zu lösen, führen wir systematisch arithmetische Operationen auf beiden Seiten der Gleichung aus.
Beispiel 1
- Lösen Sie die Gleichung \displaystyle x+3=7.
Wir subtrahieren \displaystyle 3 von beiden Seiten- \displaystyle x+3-3=7-3.
- \displaystyle x=7-3=4.
- Lösen Sie die Gleichung \displaystyle 3x=6.
Wier dividieren beide Seiten mit \displaystyle 3- \displaystyle \frac{3x}{3} = \frac{6}{3}\,.
- \displaystyle x=\frac{6}{3} = 2.
- Lösen Sie die Gleichung \displaystyle 2x+1=5\,\mbox{.}
Zuerst subtrahieren wir \displaystyle 1 von beiden Seiten, sodass \displaystyle 2x alleine links steht- \displaystyle 2x=5-1.
- \displaystyle x = \frac{4}{2} = 2.
- \displaystyle 2x=5-1.
Eine lineare Gleichung kann immer in die Normalform \displaystyle ax=b gebracht werden. Die Lösung bekommen wir einfach mit Division durch a, \displaystyle x=b/a (nur wenn \displaystyle a\not=0).
Die Schwierigkeit in der Lösung von linearen Gleichungen liegt also nicht in der direkten Lösung, sondern in den Vereinfachungen, die notwendig sind, um die Gleichung in die Standardform zu bringen. Hier zeigen wir einige Beispiele von linearen Gleichungen, die alle in die Standardform gebracht werden, wobei wir die Lösung einfach erhalten.
Beispiel 2
Löse die Gleichung \displaystyle \,2x-3=5x+7.
Nachdem \displaystyle x links und rechts erscheint, subtrahieren wir von beiden Seiten der Gleichung \displaystyle 2x
\displaystyle 2x-3-2x=5x+7-2x |
und jetzt kommt \displaystyle x nur in der rechten Seite vor
\displaystyle -3 = 3x+7 \; \mbox{.} |
Jetzt subtrahieren wir 7 von beiden Seiten der Gleichung
\displaystyle -3 -7 = 3x +7-7 |
und erhalten \displaystyle 3x nur auf der rechten Seite der Gleichung
\displaystyle -10=3x\,\mbox{.} |
Im letzten Schritt dividieren wir beide Seiten durch \displaystyle 3
\displaystyle \frac{-10}{3} = \frac{3x}{3} |
und erhalten die Lösung
\displaystyle x=-\frac{10}{3}\,\mbox{.} |
Beispiel 3
Löse (für \displaystyle x) die Gleichung \displaystyle ax+7=3x-b.
Indem wir \displaystyle 3x von beiden Seiten subtrahieren
\displaystyle ax+7-3x=3x-b-3x |
\displaystyle ax+7-3x=\phantom{3x}{}-b\phantom{{}-3x} |
und danach \displaystyle 7 von beiden Seiten subtrahieren, erhalten wir
\displaystyle ax+7-3x -7=-b-7 |
\displaystyle ax\phantom{{}+7}{}-3x\phantom{{}-7}{}=-b-7 |
Jetzt sind alle Terme, die \displaystyle x enthalten auf der linken Seite der Gleichung und alle anderen Terme auf der rechten Seite. Auf der linken Seite können wir den Faktor \displaystyle x herausheben
\displaystyle (a-3)x = -b-7\; \mbox{.} |
Wenn wir beide Seiten mit \displaystyle a-3 dividieren, erhalten wir die Lösung
\displaystyle x= \frac{-b-7}{a-3}\; \mbox{.} |
Man sieht nicht immer deutlich, ob eine Gleichung linear ist oder nicht. In den folgenden Beispielen sehen wir, dass Vereinfachungen eine komplizierte Gleichung in eine lineare Gleichung umwandeln können.
Beispiel 4
Lösen Sie die Gleichung \displaystyle \ (x-3)^2+3x^2=(2x+7)^2.
Wir erweitern die quadratischen Ausdrücke auf beiden Seiten der Gleichung.
\displaystyle x^2-6x+9+3x^2=4x^2+28x+49\,\mbox{,} |
\displaystyle 4x^2-6x+9=4x^2+28x+49\,\mbox{.} |
Hier subtrahieren wir \displaystyle 4x^2 von beiden Seiten
\displaystyle -6x +9 = 28x +49\; \mbox{.} |
und addieren \displaystyle 6x zu beiden Seiten
\displaystyle 9 = 34x +49\; \mbox{.} |
und subtrahieren \displaystyle 49 von beiden Seiten
\displaystyle -40=34x\; \mbox{.} |
und schließlich dividieren wir beide Seiten durch \displaystyle 34
\displaystyle x = \frac{-40}{34}= - \frac{20}{17}\; \mbox{.} |
Beispiel 5
Löse die Gleichung \displaystyle \ \frac{x+2}{x^2+x} = \frac{3}{2+3x}.
Wir sammeln beide Terme auf der linken Seite der Gleichung
\displaystyle \frac{x+2}{x^2+x}-\frac{3}{2+3x}= 0\; \mbox{.} |
und schreiben die Brüche mit gemeinsamen Nennern
\displaystyle \frac{(x+2)(2+3x)}{(x^2+x)(2+3x)}-\frac{3(x^2+x)}{(2+3x)(x^2+x)}= 0 |
und vereinfachen den Zähler
\displaystyle \frac{(x+2)(2+3x)-3(x^2+x)}{(x^2+x)(2+3x)} = 0, |
\displaystyle \frac{3x^2+8x+4-(3x^2+3x)}{(x^2+x)(2+3x)} = 0, |
\displaystyle \frac{5x +4}{(x^2+x)(2+3x)} = 0\,\mbox{.} |
Diese Gleichung ist nur gültig, wenn der Zähler null ist (und der Nenner nicht gleichzeitig null ist).
\displaystyle 5x+4=0 |
und wir haben \displaystyle \,x = -\frac{4}{5}.
Geraden
Gleichungen wie
\displaystyle y = 2x+1 |
\displaystyle y = -x+3 |
\displaystyle y = \frac{1}{2} x -5 |
sind Beispiele von linearen Gleichungen, die man wie
\displaystyle y = kx+m |
schreiben kann, wobei \displaystyle k und \displaystyle m Konstanten sind.
Der Funktionsgraph einer linearen Gleichung ist immer eine gerade Linie (auch Gerade genannt). Die Konstante \displaystyle k bestimmt, wie steil die Gerade im Verhältnis zur \displaystyle x-Achse ist und die Konstante \displaystyle m ist der Schnittpunkt von der Gerade mit der \displaystyle y-Achse.
Die Konstante \displaystyle k wird die Steigung genannt und bedeutet, dass eine Veränderung um eine Einheit in der positiven \displaystyle x-Richtung entlang der Geraden, eine Veränderung um \displaystyle k Einheiten in der positiven \displaystyle y-Richtung ergibt. Also ist die Steigung:
- Aufwärts wenn \displaystyle k>0.
- Abwärts wenn \displaystyle k<0.
Eine horizontale Gerade, die parallel mit der \displaystyle x-Achse ist, hat \displaystyle k=0 während eine vertikale Gerade, parallel mit der \displaystyle y-Achse kein \displaystyle k hat (Eine vertikale Linie kann nicht wie \displaystyle y=kx+m geschrieben werden).
Beispiel 6
- Zeichne die Gerade \displaystyle y=2x-1.
Wenn wir die Gleichung mit der Standardform \displaystyle y=kx+m vergleichen, sehen wir, dass \displaystyle k=2 und \displaystyle m=-1. Dies bedeutet, dass die Gerade die Steigung \displaystyle 2 hat und die \displaystyle y-Achse im Punkt \displaystyle (0,-1) kreuzt. Sehen Sie die linke Figur. - Zeichnen Sie die Gerade \displaystyle y=2-\tfrac{1}{2}x.
Die Gleichung kann wie \displaystyle y= -\tfrac{1}{2}x + 2 geschrieben werden. Wir sehen, dass die Steigung \displaystyle k= -\tfrac{1}{2} ist, und dass \displaystyle m=2. Siehe rechte Figur.
|
| |
Line y = 2x - 1 | Line y = 2 - x/2 |
Beispiel 7
Was ist die Steigung der Geraden, die durch die Punkte \displaystyle (2,1) und \displaystyle (5,3) geht?
Wenn wir die Punkte zeichnen, sehen wir, dass \displaystyle 5-2=3 Einheiten entlang der Geraden in der \displaystyle x-Richtung \displaystyle 3-1=2 Einheiten in der \displaystyle y-Richtung entsprechen. Also entspricht \displaystyle 1 Schritt in der \displaystyle x-Richtung \displaystyle k=\frac{3-1}{5-2}= \frac{2}{3} Schritte in der \displaystyle y-Richtung. Also ist die Steigung \displaystyle k= \frac{2}{3}.
Zwei Geraden die parallel sind, haben dieselbe Steigung. Man kann auch zeigen, dass für zwei Geraden, die rechtwinkelig sind und die Steigungen \displaystyle k_1 und \displaystyle k_2 haben, dass \displaystyle k_2 = -\frac{1}{k_1}, oder anders geschrieben \displaystyle k_1 k_2 = -1.
Die Gerade in der linken Figur hat die Steigung \displaystyle k, also entspricht \displaystyle 1 Einheit in die \displaystyle x-Richtung, \displaystyle k Einheiten in die \displaystyle y-Richtung. Falls die Gerade \displaystyle 90^\circ im Uhrzeigersinn gedreht wird, haben wir die Figur rechts. Wir sehen, dass die Steigung jetzt \displaystyle -\frac{1}{k} ist, nachdem \displaystyle -k Einheiten in die \displaystyle x-Richtung \displaystyle 1 Einheit in die \displaystyle y-Richtung entsprechen.
Beispiel 8
- Die Geraden \displaystyle y=3x-1 und \displaystyle y=3x+5 sind parallel.
- Die Geraden \displaystyle y=x+1 und \displaystyle y=2-x sind rechtwinkelig.
Alle Geraden(auch die vertikalen) können generell wie
\displaystyle ax+by=c |
geschrieben werden, wobei \displaystyle a, \displaystyle b und \displaystyle c Konstanten sind.
Beispiel 9
- Bringe die Gerade \displaystyle y=5x+7 in die Form \displaystyle ax+by=c.
Wir subtrahieren den \displaystyle x-Term von beiden Seiten:\displaystyle -5x+y=7. - Schreibe die Gerade \displaystyle 2x+3y=-1 auf der Form \displaystyle y=kx+m.
Wir subtrahieren den \displaystyle x-Term von beiden Seiten
\displaystyle 3y=-2x-1
und dividieren beide Seiten durch \displaystyle 3\displaystyle y=-\frac{2}{3}x - \frac{1}{3}\,\mbox{.}
Hier wird gezeigt, wie die Gleichung einer Geraden aus zwei ihrer Punkte konstruiert werden kann.
Flächen in einem Koordinatensystem
Man kann durch geometrische Interpretation von Ungleichungen Gebiete in einem Koordinatensystem definieren.
Beispiel 10
- Zeichne das Gebiet im \displaystyle x,y-Koordinatensystem, das die Ungleichung \displaystyle y\ge2 erfüllt.
Das Gebiet besteht aus allen Punkten, \displaystyle (x,y), wo die \displaystyle y-Koordinate größer oder gleich \displaystyle 2 ist, also alle Punkte oberhalb der Geraden \displaystyle y=2.
- Zeichne das Gebiet im \displaystyle x,y-Koordinatensystem, dass die Ungleichung \displaystyle y < x erfüllt.
Ein Punkt \displaystyle (x,y), der die Ungleichung \displaystyle y < x erfüllt, muss eine \displaystyle x-Koordinate haben, die größer als die \displaystyle y-Koordinate ist. Also liegt das Gebiet rechts von der Geraden \displaystyle y=x.
Dass die Gerade \displaystyle y=x gepunktet ist, heißt, dass sie nicht zum gefärbten Gebiet gehört.
Beispiel 11
Zeichne das Gebiet im \displaystyle x,y-Koordinatensystem, das die Ungleichung \displaystyle 2 \le 3x+2y\le 4 erfüllt.
Die doppelte Ungleichung kann in zwei Ungleichungen aufgeteilt werden
\displaystyle 3x+2y \ge 2 \quad und \displaystyle \quad 3x+2y\le4 \;\mbox{.} |
Wir subtrahieren den \displaystyle x-Term von beiten Seiten und dividieren danach beide Seiden durch \displaystyle 2
\displaystyle y \ge 1-\frac{3}{2}x \quad und \displaystyle \quad y\le 2-\frac{3}{2}x \;\mbox{.} |
Die Punkte, die die erste Ungleichung erfüllen, liegen auf oder oberhalb der Geraden \displaystyle y = 1-\tfrac{3}{2}x, während die Punkte, welche die zweite Ungleichung erfüllen auf oder unterhalb der Geraden \displaystyle y= 2-\tfrac{3}{2}x liegen.
Die Punkte, die beide Ungleichungen erfüllen liegen auch in beiden Gebieten.
Beispiel 12
Die Geraden \displaystyle y=x, \displaystyle y=-x und \displaystyle y=2 begrenzen ein Dreieck.
Wir sehen, dass ein Punkt folgende Bedienungen erfüllen muss, um im Dreieck zu liegen:
Die \displaystyle y-Koordinate muss geringer als \displaystyle 2 sein. Die \displaystyle y-Koordinate muss aber auch größer als \displaystyle 0 sein. Also muss gelten, dass \displaystyle 0\le y\le2.
Wir sehen auch, dass alle Punkte oberhalb der Geraden \displaystyle y=-x und \displaystyle y=x liegen müssen. Dies entspricht, dass \displaystyle -y\le x\le y. Nachdem wir Begrenzungen für die \displaystyle y-Koordinate haben, wissen wir auch, dass \displaystyle x kleiner als \displaystyle 2 sein muss und größer als \displaystyle -2.
Die Basis des Dreiecks ist \displaystyle 4 und die Höhe ist \displaystyle 2.
Fie Fläche des Dreiecks ist daher \displaystyle 4\cdot 2/2=4.
Tipps fürs Lernen
Diagnostische Prüfung und Schlussprüfung
Nachdem Du mit der Theorie fertig bist, solltest Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die Links zu den Prüfungen in Deiner "Student Lounge".
Bedenken Sie folgendes ...
Zeichnen Sie immer ihre eigenen Figuren wenn Sie geometrische Probleme lösen, und zeichnen Sie genau. Mit einer guten Figur sind Sie fast fertig, während eine schlechte Figur irreführend sein kann.
Nützliche Websites